Механизмы транспорта и полевой эмиссии электронов в 2D некристаллических углеродных гетероструктурах с квантовым барьером

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследовано влияние ширины квантового барьера в виде туннельно тонкого обедненного носителями заряда углеродного слоя в обогащенной некристаллической углеродной матрице на бездиссипативный транспорт и полевую эмиссию электронов. Показано, что нелинейности поперечных тока в гетероструктурах при статических низкополевых электрических воздействиях и параметров вольт-амперных характеристик полевой эмиссии электронов в сильных импульсных электрических полях микросекундной длительности определяются параметрами квантового барьера и реализацией условий резонансного туннелирования с участием различных нулевых уровней энергии размерного квантования.

Полный текст

Доступ закрыт

Об авторах

Г. Я. Красников

Акционерное общество «Научно-исследовательский институт молекулярной электроники»

Email: vbokarev@niime.ru
Россия, Зеленоград

В. П. Бокарев

Акционерное общество «Научно-исследовательский институт молекулярной электроники»

Автор, ответственный за переписку.
Email: vbokarev@niime.ru
Россия, Зеленоград

Г. С. Теплов

Акционерное общество «Научно-исследовательский институт молекулярной электроники»

Email: vbokarev@niime.ru
Россия, Зеленоград

Р. К. Яфаров

Саратовский филиал Института радиотехники и электроники им. В. А. Котельникова РАН

Email: pirpc@yandex.ru
Россия, Саратов

Список литературы

  1. Jin-Woo Han, Jae Sub Oh and M. Meyyappan. Vacuum nanoelectronics: Back to the future? — Gate insulated nanoscale vacuum channel transistor. Appl. Phys. Lett. 100, 213505 (2012). http://dx.doi.org/10.1063/1.4717751.
  2. Fowler R.H., Nordheim L.W. Electronemission in intense electric fields // Proc. R. Soc. London. A. 1928. V. 119. P. 173–181.
  3. Патент RU2 455 724 C1. Опубликовано: 10.07.2012. Бюл. № 19. Структура и способ изготовления интегральных автоэмиссионных элементов с эмиттерами на основе наноалмазных покрытий. Авторы: Красников Г.Я., Зайцев Н.А., Орлов С.Н., Хомяков И.А., Яфаров Р.К.
  4. Marcus R.B., Ravi T.S., Gmitter T. et all. Formation of silicon tips with < 1 nm radius // Applied Physics Letters. 1990. Vol. 56, № 3. P. 236–238.
  5. Фурсей Г.Н., Поляков М.А., Кантонистов А.А., и др. // ЖТФ. 2013. Т. 83. № 6. С. 71.
  6. Panda K., Hyeok J.J., Park J.Y., et al. // Sci. Rep. 2007. № 7. P. 16325.
  7. Sobaszek M., Siuzdak K., Ryl J., et al. // J. Phys. Chem. C. 2017. V. 121. № 38. P. 20821.
  8. Яфаров Р.К., Сторублев А.В. Долговременная воспроизводимость эмиссионных характеристик алмазографитовых полевых источников электронов в нестационарных вакуумных условиях эксплуатации // Письма в ЖТФ. 2021. Т. 47, вып. 24. С. 17–19.
  9. Блохинцев Д.И. Основы квантовой механики. М.: Наука, 1٩83.
  10. Бонч-Бруевич В.Л, Калашников С.Г. Физика полупроводников. М.: Наука, 1٩77. 672 с.
  11. Пул Ч. – мл., Оуэнс Ф. Нанотехнологии. Москва.: Техносфера, 2006. 336 с.
  12. Драгунов В.П., Неизвестный И.Г., Гридчин В.А. Основы наноэлектроники. Москва. Физматкнига, 2006. 496 с.
  13. Успехи наноинженерии: электроника, материалы, структуры. Под ред. Дж. Дэвиса, М. Томсона. Москва.: Техносфера, 2011. 491 с.
  14. Яфаров Р.К. Физика СВЧ вакуумно-плазменных нанотехнологий. М.: Физматлит, 2009. 216 с.
  15. Яфаров Р.К. // Письма в ЖТФ. 2019. Т. 45. № 9. С. 3.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Зависимости поперечных токов (а) и их разностей (б) от толщины обедненного слоя двухслойных гетероструктур при обратном (1) и прямом (2) включениях источника питания.

Скачать (126KB)
3. Рис. 2. ВАХи (а) и поперечные токи (б) при напряжениях 30 (1) и 50 В (2) в трехслойных гетероструктурах с различными толщинами обедненных слоев, нм: 1 – 5; 2 – 10; 3 – 15; 4 – 20; 5 – 0.

Скачать (139KB)
4. Рис. 3. Полевые ВАХ двух (а) и трехслойных (б) гетероструктур в зависимости от толщины обедненного слоя, нм: 1 – 5; 2 – 10; 3 – 15; 4 – 0.

Скачать (121KB)
5. Рис. 4. Зависимости плотностей полевых токов (1), порогов активации эмиссии (2) (а), крутизны ВАХ (1) и интервалов допустимых напряженностей электрических полей (2) (б) от толщины обедненных слоев двухслойных гетероструктур.

Скачать (142KB)
6. Рис. 5. Зависимости плотностей полевых токов (1), порогов активации эмиссии (2) (а), крутизны ВАХ (1) и интервалов допустимых напряженностей электрических полей (2) (б) от толщины обедненных слоев трехслойных гетероструктур.

Скачать (146KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».