Том 59, № 8 (2023)

Обложка

Весь выпуск

Хроноамперометрическое нахождение скорости нуклеации, количества зародышей и коэффициента диффузии при электрокристаллизации

Гамбург Ю.Д.

Аннотация

В предположении о смешанной кинетике процесса выведены новые формулы для вычисления коэффициента диффузии, скорости нуклеации и количества растущих кластеров исходя из экспериментальных кривых зависимости тока от времени при потенциостатической нуклеации и росте осадка при электрокристаллизации. С этой точки зрения проанализирован ряд опубликованных экспериментальных данных. Показано, что при кристаллизации на активной металлической подложке число зародышей может резко возрастать с потенциалом, в отличие от бесструктурных подложек (типа стеклоуглерода), где это число слабо зависит от потенциала.

Электрохимия. 2023;59(8):435-441
pages 435-441 views

Особенности влияния халькогенидов серебра на температуру размягчения халькогенидных стекол с ионной проводимостью

Тверьянович Ю.С., Фазлетдинов Т.Р., Томаев В.В.

Аннотация

Приведен анализ изменения температуры размягчения халькогенидных стекол с ионной проводимостью по серебру от содержания его халькогенидов. Предложено объяснение особенностей изменения температуры размягчения стекол на основе халькогенидов серебра сосуществованием ковалентных связей серебро–халькоген (Ag–Ch) и металлофильных связей серебро–серебро (Ag–Ag). Большое количество рассмотренных систем демонстрирует общую закономерность, позволяющую считать, что степень связности серебра в сетке ХГС в силу формирования им помимо ковалентных металлофильных связей действительно существенно превосходит его формальную степень окисления. Предполагается, что металлофильные взаимодействия оказывают влияние не только на температуру размягчения, но и на изменение многих других важных свойств в указанных стеклах, включая механизм ионного переноса по серебру.

Электрохимия. 2023;59(8):442-447
pages 442-447 views

Кислородно-ионные композиты MWO4–SiO2 (M – Sr, Ba)

Пестерева Н.Н., Гусева А.Ф., Белятова В.А., Корона Д.В.

Аннотация

Композиционные материалы (1 – f)SrWO4fSiO2 и (1 – f)BaWO4fSiO2, где f – объемная доля дисперсной добавки SiO2, приготовлены твердофазным методом. Полученные композиты были исследованы методами РФА, TГ-ДСК, СЭМ-РСМА. Электропроводность композитов измерена методом электрохимического импеданса в зависимости от температуры, парциального давления кислорода в газовой фазе и состава. Для оценки вклада ионной проводимости проведены измерения суммы ионных чисел переноса методом ЭДС. Показано, что добавление 20–25 об. % нано-SiO2 к низкопроводящим кислородно-ионным проводникам SrWO4 и BaWO4 приводит к увеличению ионной проводимости композитов на их основе соответственно в 20 и 12 раз. Повышение проводимости в исследуемых системах объясняется дополнительным вкладом межфазных границ, образующихся между матрицей MeWO4 и наночастицами дисперсоида.

Электрохимия. 2023;59(8):448-455
pages 448-455 views

Анализ диффузии лития в частицах катодного материала первичных литий-марганцевых элементов методами измерения релаксации электрохимического шума и магнетосопротивления

Укше А.Е., Астафьев Е.А.

Аннотация

В статье проанализирован процесс диффузии лития в катодном материале литий-марганцевых химических источников тока (ХИТ) после кратковременного разряда с помощью анализа параметров релаксации электрохимического шума и величины магнетосопротивления слоя инжектированного лития. Показано, что источником электрохимического шума в таких ХИТ являются флуктуации диффузионного потока лития. Также полученные данные подтверждают высказанное в литературе предположение об образовании при разряде элемента в приповерхностном слое частиц MnO2 плохопроводящей фазы со шпинельной кристаллической структурой, тормозящей процесс диффузии.

Электрохимия. 2023;59(8):456-464
pages 456-464 views

Влияние механоактивации на структуру и электропроводность в системе KNO3–Al2O3

Ахмедов М.А., Гафуров М.М., Рабаданов К.Ш., Атаев М.Б., Амиров А.М., Кубатаев З.Ю., Какагасанов М.Г.

Аннотация

В настоящей работе исследовано влияние механоактивации на структуру и электропроводность композита KNO3–Al2O3. На основе анализа кривых ДСК, измеренных в процессе нагрева и охлаждения образца, установлено, что энтальпия фазовых переходов с увеличением времени механоактивации композита 0.5KNO3–0.5Al2O3 уменьшается. Методом рентгенофазового анализа обнаружено, что механоактивация приводит к уменьшению размерности зерен и увеличению дефектности. На основе данных спектроскопии электрохимического импеданса определено, что для системы KNO3–Al2O3, подвергнутой механоактивации, значения удельной ионной проводимости 3.8 × 10–5 См/см при T = 373 К и 2 × 10–3 См/см при T = 473 К и энергии активации 0.19 эВ сопоставимы c параметрами композита этого же химического состава, полученного по керамической методике. Методом КРС-спектроскопии обнаружено образование метастабильной γ-фазы KNO3 в системе KNO3–Al2O3 при температуре более 397 К. Предложено, что увеличение электропроводности в композите KNO3–Al2O3 при 373–403 К связано с наличием в композите дополнительной метастабильной γ-фазы KNO3.

Электрохимия. 2023;59(8):465-473
pages 465-473 views

Влияние наноразмерного оксидного наполнителя на структуру и проводимость композита (1 – x)(LiClO4–NaClO4)–xAl2O3

Кубатаев З.Ю., Гафуров М.М., Рабаданов К.Ш., Амиров А.М., Ахмедов М.А., Какагасанов М.Г.

Аннотация

Методами спектроскопии комбинационного рассеяния света (КРС), дифференциальной сканирующей калориметрии (ДСК) и импедансной спектроскопии исследованы физико-химические свойства эвтектической системы 78.2LiClO4–21.8NaClO4 и ее гетерогенных композитов с наноразмерным порошком оксида алюминия при различных температурах, фазовых состояниях и концентрациях Al2O3. Добавка Al2O3 приводит к увеличению ионной проводимости и уменьшению энергии активации. Методом спектроскопии КРС показано, что добавка оксида алюминия приводит к образованию аморфной фазы за счет “разрушения” кристаллической фазы перхлората натрия.

Электрохимия. 2023;59(8):474-480
pages 474-480 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».