Electrochemical reduction of carbon dioxide to formate in acetylene black gas diffusion electrode with a tin catalyst

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A test study of a hydrophobized gas diffusion electrode with a tin catalyst deposited on acetylene black A437E was carried out in order to identify its potential for intensifying the process of electroreduction of CO2 to formate in acidic and alkaline aqueous solutions. Porous electrodes with a fluoroplastic content of 40 wt. %, thickness 0.5 mm, porosity 60 vol. % and tin content ≈0.7 mg/cm2, relative to the overall surface of the electrode were studied. It has been shown that, on this type of electrodes, it is possible to carry out the electroreduction of CO2 at a current density of up to 900 mA/cm2, at temperatures of 25–55°C with a formate flow yield of 74 to 96%. Electrolysis for 4 hours with a current density of 190 mA/cm2 resulted in a solution of potassium formate with a concentration of 1.58 M. In this case, an increase in the capacity of the double electrical layer was observed from 7 to 17 mF/cm2 and a decrease in current efficiency from 96 to 58%.

全文:

受限制的访问

作者简介

G. Kolyagin

Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center of the SB RAS”

编辑信件的主要联系方式.
Email: kolyagin@icct.ru
俄罗斯联邦, Akademgorodok, 50, building 24, Krasnoyarsk, 660036

O. Taran

Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center of the SB RAS”

Email: taran.op@icct.krasn.ru
俄罗斯联邦, Akademgorodok, 50, building 24, Krasnoyarsk, 660036

参考

  1. Корниенко, В.Л., Колягин, Г.А., Таран, О.П. Электрокаталитическое восстановление диоксида углерода до муравьиной кислоты на газодиффузионных электродах на основе Sn и Bi в водных средах (обзор). Электрохимия. 2022. Т. 58. С. 443. [Kornienko, V.L., Kolyagin, G.A., and Taran, O.P., Electrocatalytic reduction of carbon dioxide to formic acid on Sn- and Bi-based gas-diffusion electrodes in aqueous media (a Review), Russ. J. Electrochem., 2022. vol. 58. p. 647.]
  2. Xiang, H., Miller, H., A., Bellini, M., Christensen, H., Scott, K., Rasul, S., and Yu, E. H., Production of formate by CO2 electrochemical reduction and its application in energy storage, Sustainable Energy and Fuels, 2020, vol. 4, p. 277.
  3. Fernández-Caso, K., Díaz-Sainz, G., Alvarez-Guerra, M., and Irabien, A., Electroreduction of CO2: advances in the continuous production of formic acid and formate, ACS Energy Lett., 2023, vol. 8, p. 1992.
  4. Chatterjee, S., Dutta, I., Lum, Y., Lai, Z., and Huang, K-W., Enanling storage and utilization of Low – carbon electricity: power to formic acid, Energy Environmental Sci., 2021, vol. 14, p. 1194.
  5. Oßkopp, M., Lowe, A., Lobo, C. M. S., Baranyai, S., Khoza, T., Auinger, M., and Klemm, E., Producing formic acid at low pH values by electrochemical CO2 reduction, Journal of CO2 Utilization, 2022, vol. 56, p. 101823.
  6. Löwe, A., Rieg, C., Hierlemann, T., Salas, N., Kopljar, D., Wagner, N., and Klemm, E., Influence of temperature on the performance of gas diffusion electrodes in the CO2 reduction reaction, ChemElectroChem, 2019, vol. 6, p. 4497.
  7. Leonard, M. E., Clarke, L. E., Forner-Cuenca, A., Brown, S. M., and Brushett, F. R., Investigating Electrode Flooding in a Flowing Electrolyte, Gas-Fed Carbon Dioxide Electrolyzer, ChemSusChem, 2020, vol. 13, p. 400.
  8. Daele, K.V., Mot, B. D., Pupo, M., Daems, N., Pant, D., Kortlever, R., and Breugelmans, T., Sn-based electrocatalyst stability: a crucial piece to the puzzle for the electrochemical CO2 reduction toward formic acid, ACS Energy Lett., 2021, vol. 6, p. 4317.
  9. Колягин, Г.А., Таран, О.П. Электрохимическое восстановление диоксида углерода до формиата в кислом электролите в сажевом газодиффузионном электроде со свинцовым катализатором. Электрохимия. 2023. Т. 59. С. 606. [Kolyagin, G.A. and Taran, O.P., Carbon dioxide electroreduction to formate in acid electrolytes in the acetylene black gas-diffusion electrode with lead catalyst, Russ. J. Electrochem., 2023, vol. 59, p. 764.]
  10. Колягин, Г.А., Корниенко, В.Л. Влияние содержания политетрафторэтилена в композиционных пористых углеродных материалах на их структурные и электрохимические характеристики на примере процесса восстановления кислорода до пероксида водорода. Электрохимия. 2020. Т. 56. С. 520. [Kolyagin, G.A. and Kornienko, V.L., The effect of polytetrafluoroethylene content in porous carbon materials on their structural and electrochemical characteristics by the example of oxygen reduction to hydrogen peroxide, Russ. J. Electrochem., 2020, vol. 56, p. 485.]
  11. Бауэр, К. Анализ органических соединений, М.: Изд-во иностр. лит., 1953. 488 с. [Bauer, K., Analysis of organic compounds (in Russian), M.: Publ. house of foreign literature, 1953. 488 p.]

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic representation of an electrolyzer cell. 1 – gas chamber, 2 – GDE, 3 – fluoroplastic clips, 4 – platinum counterelectrode, 5 – MF-4SK-100 cation exchange membrane, 6 – thermometer, 7 – outlet pipe for gaseous products, 8 – Luggin capillary, 9 – supply of CO2 or inert gas, 10 – thermostatic jacket, 11, 12 – cathode and anode chambers.

下载 (67KB)
3. Fig. 2. Polarization curves in 0.5 M CNCO3 at 25°C in atmospheres: 1 – CO2; 2 – argon.

下载 (48KB)
4. 3. The effect of electrolysis time on W (1) and formate concentration (2) in the catholyte. The current density is 190 mA/cm2. The experimental conditions are shown in Table 1.

下载 (60KB)
5. Fig. 4. Dependence of the charging current density of the double layer on the potential expansion rate. 1 – at the beginning of the experiment, 2 – after 4 hours of electrolysis.

下载 (53KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».