ПОЛНОСТЬЮ КОНСЕРВАТИВНАЯ РАЗНОСТНАЯ СХЕМА ДЛЯ ТРЁХМЕРНЫХ УРАВНЕНИЙ НАВЬЕ–СТОКСА В ЦИЛИНДРИЧЕСКОЙ СИСТЕМЕ КООРДИНАТ
- Авторы: Гусев А.О1, Мажорова О.С1
-
Учреждения:
- Институт прикладной математики имени М.В. Келдыша РАН
- Выпуск: Том 61, № 7 (2025)
- Страницы: 919–940
- Раздел: ЧИСЛЕННЫЕ МЕТОДЫ
- URL: https://bakhtiniada.ru/0374-0641/article/view/306916
- DOI: https://doi.org/10.31857/S0374064125070057
- EDN: https://elibrary.ru/FQXGIE
- ID: 306916
Цитировать
Аннотация
Об авторах
А. О Гусев
Институт прикладной математики имени М.В. Келдыша РАН
Email: aogus@mail.ru
Москва, Россия
О. С Мажорова
Институт прикладной математики имени М.В. Келдыша РАН
Email: olgamazhor@mail.ru
Москва, Россия
Список литературы
- Fukagata, K. and Kasagi, N., Highly energy-conservative finite difference method for the cylindrical coordinate system, J. Comput. Phys., 2002, vol. 181, pp. 478–498.
- He, K., Seddighi, M., and He, S., DNS study of a pipe flow following a step increase in flow rate, Int. J. of Heat and Fluid Flow, 2016, vol. 57, pp. 130–141.
- Gelfgat, A.Y., Three-dimensional instability of axisymmetric flows: solution of benchmark problems by a loworder finite volume method, Int. J. for Numerical Methods in Fluid, 2007, vol. 54, pp. 269–294.
- Wang, B., Zhou, L., Wan, Z. [et. al.], Stability analysis of Rayleigh–Benard convection in a cylinder with internal heat generation, Phys. Rev. E, 2016, vol. 94, no. 1, art. 013108.
- Bessonov, O.A., Effect of crystal and crubicle rotation on the flow stability in the Czochralski model at low Prandtl numbers, Fluid Dynamics, 2016, vol. 51, pp. 469–477.
- Xiao, Q. and Derby, J., Three-dimensional melt flow in Czochralski oxide growth: high-resolution, massively parallel, finite element computations, J. of Crystal Growth, 1995, vol. 152, pp. 169–181.
- Harlow, F.H. and Welch, J.E., Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Physics of Fluids, 1965, vol. 8, pp. 2182–2189.
- Samarsky, A.A. and Popov, Yu.P., Raznostnye methodi resheniya zadach gazovoy dinamici (Difference Methods for Solving Gas Dynamics Problems), Moscow: Nauka, 1992.
- Samarsky, A.A., Tishkin, V.F., Favorsky A.P., and Shashkov, M.Yu., Operator difference schemes, Differ. Uravn., 1981, vol. 17, no. 7, pp. 1317–1327.
- Lipnikov, K., Manzini, G., and Shashkov, M., Mimetic finite difference method, J. Comput. Phys., 2014, vol. 257, pp. 1163–1227.
- Barbosa, E. and Daube, O., A finite difference method for 3D incompressible flows in cylindrical coordinate, Computers and Fluids, 2005, vol. 34, pp. 950–971.
- Oud, G.T., van der Heul, D.R., Vuik, C., and Henkes, R.A.W.M., A fully conservative mimetic discretization of the Navier–Stokes equations in cylindrical coordinates with associated singularity treatment, J. Comput. Phys., 2016, vol. 325, pp. 314–337.
- Loyciansky, L.G., Mehanika zhidkosti i gaza (Fluid and Gas Mechanics), Moscow: Drofa, 2003.
- Arakawa, A., Computational design for long-term numerical integration of the equation of fluid motion: two dimensional incompressible flow, J. Comput. Phys., 1966, vol. 1, pp. 119–143.
- Friazinov, I.V., Conservativnye raznostnie shemy dlia uravninyi viazkoy neszhimarmoy zhidkosti v krivolyneynih ortogonalnyh coordinatah, Zhurnal Vichislitelnoy Matematiki i Matematicheskoy fiziki (J. Math. Math. Phys.), 1982, vol. 22, no. 5, pp. 1195–1207.
- Samarsky, A.A., Theory of Difference Schemes, New-York: Marcel Dekker, 1989.
Дополнительные файлы
