IDENTIFICATION OF THE ORDER OF FRACTIONAL DERIVATIVE IN WINDKESSEL MODEL
- Autores: Gamilov T.M1,2, Kirichenko Y.Y.2, Yanbarisov R.M1,2, Valetov D.K2
-
Afiliações:
- Marchuk Institute of Numerical Mathematics of RAS
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
- Edição: Volume 61, Nº 7 (2025)
- Páginas: 910–918
- Seção: NUMERICAL METHODS
- URL: https://bakhtiniada.ru/0374-0641/article/view/306915
- DOI: https://doi.org/10.31857/S0374064125070042
- EDN: https://elibrary.ru/FQXUIX
- ID: 306915
Citar
Resumo
Palavras-chave
Sobre autores
T. Gamilov
Marchuk Institute of Numerical Mathematics of RAS; I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: gamilov.tm@gmail.com
Moscow, Russia; Moscow, Russia
Ya. Kirichenko
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: yu67inbox@gmail.com
Moscow, Russia
R. Yanbarisov
Marchuk Institute of Numerical Mathematics of RAS; I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: ruslan.yanbarisov@gmail.com
Moscow, Russia; Moscow, Russia
D. Valetov
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: valetov_d_k@staff.sechenov.ru
Moscow, Russia
Bibliografia
- Frank, O. The basic shape of the arterial pulse. First treatise: mathematical analysis / O. Frank // J. of Molecular and Cellular Cardiology. — 1990. — V. 22, № 3. — P. 255–277.
- Estimating central blood pressure from aortic flow: development and assessment of algorithms / J. Mariscal-Harana, P.H. Charlton, S. Vennin [et al.] // Amer. J. Physiol. Heart Circ. Physiol. — 2021. — V. 320, № 2 — P. H494–H510.
- Bahloul, M.A. Human hypertension blood flow model using fractional calculus / M.A. Bahloul, Y. Aboelkassem, T.M. Laleg-Kirati // Front Physiol. — 2022. — V. 13. — Art. 838593.
- Adhikary, A. Realization of Foster structure-based ladder fractor with phase band specification / A. Adhikary, A. Shil, A. Biswas // Circuits Syst. Signal Process. — 2020. — V. 39. — P. 2272–2292.
- Gamilov, T. Fractional-order windkessel boundary conditions in a one-dimensional blood flow model for fractional flow reserve (FFR) estimation / T. Gamilov, R. Yanbarisov // Fractal Fract. — 2023. — V. 7, № 5. — Art. 373.
- Resmi, V.L. Study on fractional order arterial windkessel model using optimization method / V.L. Resmi, N. Selvaganesan // IETE J. of Education. — 2023. — V. 64, № 2. — P. 103–111.
- Vabishchevich, P.N. Approximate solution of the Cauchy problem for a first-order integrodifferential equation with solution derivative memory / P.N. Vabishchevich // J. Comp. Appl. Math. — 2023. — V. 422. — Art. 114887.
- Algorithms for the fractional calculus: a selection of numerical methods / K. Diethelm, N.J. Ford, A.D. Freed, Yu. Luchko // Comp. Meth. in Appl. Mech. and Eng. — 2005. — V. 194, № 6–8. — P. 743–773.
- Exact results for a fractional derivative of elementary functions / G. Shchedrin, N.C. Smith, A. Gladkina, L.D. Carr // SciPost Phys. — 2018. — V. 4. — Art. 029.
- Stevens, S.A. A differentiable, periodic function for pulsatile cardiac output based on heart rate and stroke volume / S.A. Stevens, W.D. Lakin, W. Goetz // Math. Biosciences. — 2003. — V. 128, № 2. — P. 201–211.
- Hancock, J.T. CatBoost for big data: an interdisciplinary review / J.T. Hancock, T.M. Khoshgoftaar // J. Big Data. — 2020. — V. 7. — Art. 94.
Arquivos suplementares
