Диффузионные моды двухзонных фермионов в условиях диссипативной динамики, сохраняющей число частиц

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Управляемые диссипативные системы интересны возможностью создания контролируемых нетривиальных квантово-коррелированных многочастичных состояний. Особняком стоят диссипативные модели, сохраняющие число частиц. Как известно, в квантовых системах с унитарной динамикой сохранение числа частиц и случайное рассеяние приводят к диффузионному поведению двухчастичных возбуждений (диффузонов и куперонов). Существование диффузионных мод в сохраняющей число частиц диссипативной динамике еще недостаточно изучено. В данной работе мы явно демонстрируем существование диффузонов в двухзонной модели с диссипативной динамикой, направленной на заполнение одной фермионной зоны за счет опустошения другой. Исследуемая модель является обобщением модели, предложенной в F. Tonielli, J. C. Budich, A. Altland, and S. Diehl, Phys. Rev. Lett. 124, 240404 (2020). В работе получена зависимость коэффициента диффузии от параметров модели и скорости диссипации. Существование диффузионных мод усложняет проектирование макроскопических многочастичных коррелированных состояний.

Об авторах

А. А. Люблинская

Институт теоретической физики им. Л. Д. Ландау;Московский физико-технический институт

Email: burmi@itp.ac.ru
142432, г. Черноголовка, Московская область, Россия; 141700, г. Долгопрудный, Московская область, Россия

И. С. Бурмистров

Институт теоретической физики им. Л. Д. Ландау;Национальный исследовательский университет Высшая школа экономики

Автор, ответственный за переписку.
Email: burmi@itp.ac.ru
142432, г. Черноголовка, Московская область, Россия; 141700, г. Долгопрудный, Московская область, Россия

Список литературы

  1. L.M. Sieberer, M. Buchhold, and S. Diehl, Rep. Prog. Phys. 79, 096001 (2016).
  2. K. Le Hur, L. Henriet, L. Herviou, K. Plekhanov, A. Petrescu, T. Goren, M. Schiro, C. Mora, and P.P. Orth, C. R. Phys. 19, 451 (2018).
  3. B. Skinner, J. Ruhman, and A. Nahum, Phys. Rev. X 9, 031009 (2019).
  4. M. S. Rudner and N.H. Lindner, Nat. Rev. Phys. 2, 229 (2020).
  5. F. Thompson and A. Kamenev, Ann. Phys. (N.Y.) 455, 169385 (2023).
  6. W. Lechner and P. Zoller, Phys. Rev. Lett. 111, 185306 (2013).
  7. F. Piazza and P. Strack, Phys. Rev. Lett. 112, 143003 (2014).
  8. J. Keeling, M. J. Bhaseen, and B.D. Simons, Phys. Rev. Lett. 112, 143002 (2014).
  9. E. Altman, L.M. Sieberer, L. Chen, S. Diehl, and J. Toner, Phys. Rev. X 5, 011017 (2015).
  10. C. Kollath, A. Sheikhan, S. Wolff, and F. Brennecke, Phys. Rev. Lett. 116, 060401 (2016).
  11. Z. Leghtas, S. Touzard, I.M. Pop, A. Kou, B. Vlastakis, A. Petrenko, K.M. Sliwa, A. Narla, S. Shankar, M. J. Hatridge, M. Reagor, L. Frunzio, R. J. Schoelkopf, M. Mirrahimi, and M.H. Devoret, Science 347, 853 (2015).
  12. E.G.D. Torre, E. Demler, T. Giamarchi, and E. Altman, Nat. Phys. 6, 806 (2010).
  13. L.M. Sieberer, S.D. Huber, E. Altman, and S. Diehl, Phys. Rev. Lett. 110, 195301 (2013).
  14. J. Raftery, D. Sadri, S. Schmidt, H.E. T¨ureci, and A.A. Houck, Phys. Rev. X 4, 031043 (2014).
  15. Y. Li, X. Chen, and M.P.A. Fisher, Phys. Rev. B 98, 205136 (2018).
  16. Y. Li, X. Chen, and M.P.A. Fisher, Phys. Rev. B 100, 134306 (2019).
  17. S. Roy, J.T. Chalker, I.V. Gornyi, and Y. Gefen, Phys. Rev. Research 2, 033347 (2020).
  18. S. Garratt and J.T. Chalker, Phys. Rev. Lett. 127, 026802 (2021).
  19. S. Diehl, A. Micheli, A. Kantian, B. Kraus, H.P. Buchler, and P. Zoller, Nat. Phys. 4, 878 (2008).
  20. B. Kraus, H.P. Buchler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller, Phys. Rev. A 78, 042307 (2008).
  21. F. Verstraete, M.M. Wolf, and J. I. Cirac, Nat. Phys. 5, 633 (2009).
  22. H. Weimer, M. Muller, I. Lesanovsky, P. Zoller, and H.P. Buchler, Nat. Phys. 6, 382 (2010).
  23. S. Diehl, E. Rico, M.A. Baranov, and P. Zoller, Nat. Phys. 7, 971 (2011).
  24. C.-E. Bardyn, M.A. Baranov, E. Rico, A. ˙Imam˘oglu, P. Zoller, and S. Diehl, Phys. Rev. Lett. 109, 130402 (2012).
  25. C.-E. Bardyn, M.A. Baranov, C.V. Kraus, E. Rico, A. ˙Imam˘oglu, P. Zoller, and S. Diehl, New J. Phys. 15, 085001 (2013).
  26. J. Otterbach and M. Lemeshko, Phys. Rev. Lett. 113, 070401 (2014).
  27. R. Konig and F. Pastawski, Phys. Rev. B 90, 045101 (2014).
  28. N. Lang and H.P. Buchler, Phys. Rev. A 92, 012128 (2015).
  29. J.C. Budich, P. Zoller, and S. Diehl, Phys. Rev. A, 91 042117 (2015).
  30. F. Iemini, D. Rossini, R. Fazio, S. Diehl, and L. Mazza, Phys. Rev. B 93, 115113 (2016).
  31. L. Zhou, S. Choi, and M. D. Lukin, arXiv:1706.01995[quant-ph] (2017).
  32. Z. Gong, S. Higashikawa, and M. Ueda, Phys. Rev. Lett. 118, 200401 (2017).
  33. M. Goldstein, SciPost Physics 7, 67 (2019).
  34. G. Shavit and M. Goldstein, Phys. Rev. B 101, 125412 (2020).
  35. F. Tonielli, J.C. Budich, A. Altland, and S. Diehl, Phys. Rev. Lett. 124, 240404 (2020).
  36. T. Yoshida, K. Kudo, H. Katsura, and Y. Hatsugai, Phys. Rev. Research 2, 033428 (2020).
  37. M. Gau, R. Egger, A. Zazunov, and Y. Gefen, Phys. Rev. Lett. 125, 147701 (2020).
  38. M. Gau, R. Egger, A. Zazunov, and Y. Gefen, Phys. Rev. B 102, 134501 (2020).
  39. S. Bandyopadhyay and A. Dutta, Phys. Rev. B 102, 184302 (2020).
  40. R.A. Santos, F. Iemini, A. Kamenev, and Y. Gefen, Nat. Commun. 11, 5899 (2020).
  41. A. Altland, M. Fleischhauer, and S. Diehl, Phys. Rev. X 11, 021037 (2021).
  42. A. Beck and M. Goldstein, Phys. Rev. B 103, L241401 (2021).
  43. A. Nava, G. Campagnano, P. Sodano, and D. Giuliano, Phys. Rev. B 107, 035113 (2023).
  44. G. Shkolnik, A. Zabalo, R. Vasseur, D.A. Huse, J.H. Pixley, and S. Gazit, arXiv:2308.03844.
  45. G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
  46. V. Gorini, A. Kossakowski, and E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976).
  47. M. Esposito and P. Gaspard, J. Stat. Phys. 121, 463 (2005).
  48. O.A. Castro-Alvaredo, B. Doyon, and T. Yoshimura, Phys. Rev. X 6, 041065 (2016).
  49. A. Dhar and H. Spohn, C. R. Phys. 20, 393 (2019).
  50. T. Jin, J. S. Ferreira, M. Filippone, and T. Giamarchi, Phys. Rev. Research 4, 013109 (2022).
  51. P.A. Nosov, D. S. Shapiro, M. Goldstein, and I. S. Burmistrov, Phys. Rev. B 107, 174312 (2023).
  52. A. Kamenev and A. Levchenko, Adv. Phys. 58, 197 (2009).
  53. B. Buˇca and T. Prosen, New J. Phys. 14, 073007 (2012).
  54. V.V. Albert and L. Jiang, Phys. Rev. A 89, 022118 (2014).
  55. P.A. Lee and T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
  56. Q. Yang, Y. Zuo, and D.E. Liu, arXiv:2207.03376.
  57. M. Fava, L. Piroli, T. Swann, D. Bernard, and A. Nahum, arXiv:2302.12820.
  58. I. Poboiko, P. P¨opperl, I.V. Gornyi, and A.D. Mirlin, arXiv:2304.03138.
  59. F. S. Lozano-Negro, E.A. Navarro, N.C. Ch'avez, F. Mattiotti, F. Borgonovi, H.M. Pastawski, and G. L. Celardo, arXiv:2307.05656.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».