Diffusive Modes of Two-Band Fermions Under Number-Conserving Dissipative Dynamics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Driven-dissipative protocols are proposed to control and create nontrivial quantum many-body correlated states. Protocols conserving the number of particles stand apart. As well-known, in quantum systems with the unitary dynamics the particle number conservation and random scattering yield diffusive behavior of two-particle excitations (diffusons and cooperons). Existence of diffusive modes in the particle-number-conserving dissipative dynamics is not well studied yet. We explicitly demonstrate the existence of diffusons in a paradigmatic model of a two-band system, with dissipative dynamics aiming to empty one fermion band and to populate the other one. The studied model is generalization of the model introduced in F. Tonielli, J.C. Budich, A. Altland, and S. Diehl, Phys. Rev. Lett. 124, 240404 (2020). We find how the diffusion coefficient depends on details of a model and the rate of dissipation. We discuss how the existence of diffusive modes complicates engineering of macroscopic many-body correlated states.

About the authors

A. A. Lyublinskaya

Landau Institute for Theoretical Physics, Russian Academy of Sciences;Moscow Institute for Physics and Technology (National Research University)

Email: burmi@itp.ac.ru
142432, Chernogolovka, Moscow region, Russia;141700, Dolgoprudnyi, Moscow region, Russia

I. S. Burmistrov

Landau Institute for Theoretical Physics, Russian Academy of Sciences;Laboratory for Condensed Matter Physics, HSE University

Author for correspondence.
Email: burmi@itp.ac.ru
142432, Chernogolovka, Moscow region, Russia;141700, Dolgoprudnyi, Moscow region, Russia

References

  1. L.M. Sieberer, M. Buchhold, and S. Diehl, Rep. Prog. Phys. 79, 096001 (2016).
  2. K. Le Hur, L. Henriet, L. Herviou, K. Plekhanov, A. Petrescu, T. Goren, M. Schiro, C. Mora, and P.P. Orth, C. R. Phys. 19, 451 (2018).
  3. B. Skinner, J. Ruhman, and A. Nahum, Phys. Rev. X 9, 031009 (2019).
  4. M. S. Rudner and N.H. Lindner, Nat. Rev. Phys. 2, 229 (2020).
  5. F. Thompson and A. Kamenev, Ann. Phys. (N.Y.) 455, 169385 (2023).
  6. W. Lechner and P. Zoller, Phys. Rev. Lett. 111, 185306 (2013).
  7. F. Piazza and P. Strack, Phys. Rev. Lett. 112, 143003 (2014).
  8. J. Keeling, M. J. Bhaseen, and B.D. Simons, Phys. Rev. Lett. 112, 143002 (2014).
  9. E. Altman, L.M. Sieberer, L. Chen, S. Diehl, and J. Toner, Phys. Rev. X 5, 011017 (2015).
  10. C. Kollath, A. Sheikhan, S. Wolff, and F. Brennecke, Phys. Rev. Lett. 116, 060401 (2016).
  11. Z. Leghtas, S. Touzard, I.M. Pop, A. Kou, B. Vlastakis, A. Petrenko, K.M. Sliwa, A. Narla, S. Shankar, M. J. Hatridge, M. Reagor, L. Frunzio, R. J. Schoelkopf, M. Mirrahimi, and M.H. Devoret, Science 347, 853 (2015).
  12. E.G.D. Torre, E. Demler, T. Giamarchi, and E. Altman, Nat. Phys. 6, 806 (2010).
  13. L.M. Sieberer, S.D. Huber, E. Altman, and S. Diehl, Phys. Rev. Lett. 110, 195301 (2013).
  14. J. Raftery, D. Sadri, S. Schmidt, H.E. T¨ureci, and A.A. Houck, Phys. Rev. X 4, 031043 (2014).
  15. Y. Li, X. Chen, and M.P.A. Fisher, Phys. Rev. B 98, 205136 (2018).
  16. Y. Li, X. Chen, and M.P.A. Fisher, Phys. Rev. B 100, 134306 (2019).
  17. S. Roy, J.T. Chalker, I.V. Gornyi, and Y. Gefen, Phys. Rev. Research 2, 033347 (2020).
  18. S. Garratt and J.T. Chalker, Phys. Rev. Lett. 127, 026802 (2021).
  19. S. Diehl, A. Micheli, A. Kantian, B. Kraus, H.P. Buchler, and P. Zoller, Nat. Phys. 4, 878 (2008).
  20. B. Kraus, H.P. Buchler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller, Phys. Rev. A 78, 042307 (2008).
  21. F. Verstraete, M.M. Wolf, and J. I. Cirac, Nat. Phys. 5, 633 (2009).
  22. H. Weimer, M. Muller, I. Lesanovsky, P. Zoller, and H.P. Buchler, Nat. Phys. 6, 382 (2010).
  23. S. Diehl, E. Rico, M.A. Baranov, and P. Zoller, Nat. Phys. 7, 971 (2011).
  24. C.-E. Bardyn, M.A. Baranov, E. Rico, A. ˙Imam˘oglu, P. Zoller, and S. Diehl, Phys. Rev. Lett. 109, 130402 (2012).
  25. C.-E. Bardyn, M.A. Baranov, C.V. Kraus, E. Rico, A. ˙Imam˘oglu, P. Zoller, and S. Diehl, New J. Phys. 15, 085001 (2013).
  26. J. Otterbach and M. Lemeshko, Phys. Rev. Lett. 113, 070401 (2014).
  27. R. Konig and F. Pastawski, Phys. Rev. B 90, 045101 (2014).
  28. N. Lang and H.P. Buchler, Phys. Rev. A 92, 012128 (2015).
  29. J.C. Budich, P. Zoller, and S. Diehl, Phys. Rev. A, 91 042117 (2015).
  30. F. Iemini, D. Rossini, R. Fazio, S. Diehl, and L. Mazza, Phys. Rev. B 93, 115113 (2016).
  31. L. Zhou, S. Choi, and M. D. Lukin, arXiv:1706.01995[quant-ph] (2017).
  32. Z. Gong, S. Higashikawa, and M. Ueda, Phys. Rev. Lett. 118, 200401 (2017).
  33. M. Goldstein, SciPost Physics 7, 67 (2019).
  34. G. Shavit and M. Goldstein, Phys. Rev. B 101, 125412 (2020).
  35. F. Tonielli, J.C. Budich, A. Altland, and S. Diehl, Phys. Rev. Lett. 124, 240404 (2020).
  36. T. Yoshida, K. Kudo, H. Katsura, and Y. Hatsugai, Phys. Rev. Research 2, 033428 (2020).
  37. M. Gau, R. Egger, A. Zazunov, and Y. Gefen, Phys. Rev. Lett. 125, 147701 (2020).
  38. M. Gau, R. Egger, A. Zazunov, and Y. Gefen, Phys. Rev. B 102, 134501 (2020).
  39. S. Bandyopadhyay and A. Dutta, Phys. Rev. B 102, 184302 (2020).
  40. R.A. Santos, F. Iemini, A. Kamenev, and Y. Gefen, Nat. Commun. 11, 5899 (2020).
  41. A. Altland, M. Fleischhauer, and S. Diehl, Phys. Rev. X 11, 021037 (2021).
  42. A. Beck and M. Goldstein, Phys. Rev. B 103, L241401 (2021).
  43. A. Nava, G. Campagnano, P. Sodano, and D. Giuliano, Phys. Rev. B 107, 035113 (2023).
  44. G. Shkolnik, A. Zabalo, R. Vasseur, D.A. Huse, J.H. Pixley, and S. Gazit, arXiv:2308.03844.
  45. G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
  46. V. Gorini, A. Kossakowski, and E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976).
  47. M. Esposito and P. Gaspard, J. Stat. Phys. 121, 463 (2005).
  48. O.A. Castro-Alvaredo, B. Doyon, and T. Yoshimura, Phys. Rev. X 6, 041065 (2016).
  49. A. Dhar and H. Spohn, C. R. Phys. 20, 393 (2019).
  50. T. Jin, J. S. Ferreira, M. Filippone, and T. Giamarchi, Phys. Rev. Research 4, 013109 (2022).
  51. P.A. Nosov, D. S. Shapiro, M. Goldstein, and I. S. Burmistrov, Phys. Rev. B 107, 174312 (2023).
  52. A. Kamenev and A. Levchenko, Adv. Phys. 58, 197 (2009).
  53. B. Buˇca and T. Prosen, New J. Phys. 14, 073007 (2012).
  54. V.V. Albert and L. Jiang, Phys. Rev. A 89, 022118 (2014).
  55. P.A. Lee and T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
  56. Q. Yang, Y. Zuo, and D.E. Liu, arXiv:2207.03376.
  57. M. Fava, L. Piroli, T. Swann, D. Bernard, and A. Nahum, arXiv:2302.12820.
  58. I. Poboiko, P. P¨opperl, I.V. Gornyi, and A.D. Mirlin, arXiv:2304.03138.
  59. F. S. Lozano-Negro, E.A. Navarro, N.C. Ch'avez, F. Mattiotti, F. Borgonovi, H.M. Pastawski, and G. L. Celardo, arXiv:2307.05656.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».