Cocompact lattices in locally pro-$p$-complete rank-2 Kac-Moody groups
- 作者: Capdeboscq I.1, Hristova K.2, Rumynin D.A.1,3
-
隶属关系:
- University of Warwick, Mathematics Institute
- School of Mathematics, University of East Anglia
- Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE)
- 期: 卷 211, 编号 8 (2020)
- 页面: 3-19
- 栏目: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/133336
- DOI: https://doi.org/10.4213/sm9311
- ID: 133336
如何引用文章
详细
关键词
作者简介
Inna Capdeboscq
University of Warwick, Mathematics Institute
Katerina Hristova
School of Mathematics, University of East Anglia
Dmitriy Rumynin
University of Warwick, Mathematics Institute; Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE)
参考
- H. Bass, A. Lubotzky, Tree lattices, Progr. Math., 176, Birkhäuser Boston, Inc., Boston, MA, 2001, xiv+233 pp.
- A. Borel, G. Harder, “Existence of discrete cocompact subgroups of reductive groups over local fields”, J. Reine Angew. Math., 298 (1978), 53–64
- I. Capdeboscq, K. Kirkina, D. Rumynin, “Presentations of affine Kac–Moody groups”, Forum Math. Sigma, 6:e21 (2018), 35 pp.
- I. Capdeboscq, B. Remy, “On some pro-$p$ groups from infinite-dimensional Lie theory”, Math. Z., 278:1-2 (2014), 39–54
- I. Capdeboscq, D. Rumynin, “Kac–Moody groups and completions”, J. Algebra (to appear)
- I. Capdeboscq, A. Thomas, “Lattices in complete rank 2 Kac–Moody groups”, J. Pure Appl. Algebra, 216:6 (2012), 1348–1371
- I. Capdeboscq, A. Thomas, “Co-compact lattices in complete Kac–Moody groups with Weyl group right-angled or a free product of spherical special subgroups”, Math. Res. Lett., 20:2 (2013), 339–358
- P.-E. Caprace, N. Monod, “A lattice in more than two Kac–Moody groups is arithmetic”, Israel J. Math., 190 (2012), 413–444
- P.-E. Caprace, B. Remy, “Simplicity and superrigidity of twin building lattices”, Invent. Math., 176:1 (2009), 169–221
- L. Carbone, M. Ershov, G. Ritter, “Abstract simplicity of complete Kac–Moody groups over finite fields”, J. Pure Appl. Algebra, 212:10 (2008), 2147–2162
- L. Carbone, H. Garland, “Existence of lattices in Kac–Moody groups over finite fields”, Commun. Contemp. Math., 5:5 (2003), 813–867
- R. W. Carter, Y. Chen, “Automorphisms of affine Kac–Moody groups and related Chevalley groups over rings”, J. Algebra, 155:1 (1993), 44–54
- И. М. Гельфанд, М. И. Граев, И. И. Пятецкий-Шапиро, Теория представлений и автоморфные функции, Обобщенные функции, 6, Наука, М., 1966, 512 с.
- W. Herfort, L. Ribes, “Torsion elements and centralizers in free products of profinite groups”, J. Reine Angew. Math., 1985:358 (1985), 155–161
- Э. Хьюитт, К. Росс, Абстрактный гармонический анализ, т. I, Наука, М., 1975, 654 с.
- A. Lubotzky, “Lattices of minimal covolume in $operatorname{SL}_2$: a nonarchimedean analogue of Siegel's theorem $mugeq pi/21$”, J. Amer. Math. Soc., 3:4 (1990), 961–975
- T. Marquis, “Around the Lie correspondence for complete Kac–Moody groups and Gabber–Kac simplicity”, Ann. Inst. Fourier (Grenoble), 69:6 (2019), 2519–2576
- L. Ribes, P. Zalesskii, Profinite groups, Ergeb. Math. Grenzgeb. (3), 40, Springer-Verlag, Berlin, 2000, xiv+435 pp.
- G. Rousseau, “Groupes de Kac–Moody deployes sur un corps local II. Masures ordonnees”, Bull. Soc. Math. France, 144:4 (2016), 613–692
- C. L. Siegel, “Some remarks on discontinuous groups”, Ann. of Math. (2), 46:4 (1945), 708–718
- J. Tits, “Uniqueness and presentation of Kac–Moody groups over fields”, J. Algebra, 105:2 (1987), 542–573
- J. Tits, “Ensembles ordonnes, immeubles et sommes amalgamees”, Bull. Soc. Math. Belg. Ser. A, 38 (1986), 367–387
补充文件
