Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 215, № 6 (2024)

Обложка

Весь выпуск

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Об универсальных (в смысле знаков) рядах Фурьe по системе Уолша

Григорян М.Г.

Аннотация

В работе обсуждается вопрос существования таких функций (универсальных функций), ряды Фурье которых по системе Уолша универсальны в классе почти везде конечных измеримых функций в смысле знаков.Библиография: 34 названия.
Математический сборник. 2024;215(6):3-28
pages 3-28 views

Плотность сумм сдвигов одной функции в пространстве $L_2^0$ на компактной абелевой группе

Дюжина Н.А.

Аннотация

Пусть $G$ – нетривиальная компактная абелева группа. Доказывается следующий результат: действительная функция на $G$, суммы сдвигов которой плотны по норме $L_{2}$ в соответствующем действительном пространстве функций с нулевым средним, существует тогда и только тогда, когда группа $G$ связная и имеет счетную группу характеров.Библиография: 13 названий.
Математический сборник. 2024;215(6):29-40
pages 29-40 views

О мере КАМ-торов в окрестности сепаратрисы

Медведев А.Г.

Аннотация

Рассмотрим интегрируемую по Лиувиллю гамильтонову систему с $n$ степенями свободы. Предположим, что слоение фазового пространства на инвариантные лагранжевы $n$-мерные торы вырождается на $(2n-1)$-мерном особом подмногообразии $\mathbb{W}$, образованном асимптотическими многообразиями $(n-1)$-мерных гиперболических торов. При малом порядка $\varepsilon$ возмущении системы интегрируемость, как правило, исчезает, но согласно КАМ-теории большинство $n$-мерных инвариантных торов выживает. Динамику на дополнении $C$ к указанному торическому множеству принято ассоциировать с хаосом.В статье исследуется мера множества точек, являющегося пересечением окрестности многообразия $\mathbb{W}$ c множеством $C$. При естественных предположениях эта мера имеет порядок $\sqrt \varepsilon$.Этот результат дополняет и обобщает оценки меры множества $C$ вдали от многообразия $\mathbb{W}$, полученные в работах Н. В. Сванидзе, А. И. Нейштадта и Ю. Пёшеля.Библиография: 13 названий.
Математический сборник. 2024;215(6):41-60
pages 41-60 views

О $p$-невырожденных системах уравнений над разрешимыми группами

Михеенко М.А.

Аннотация

Любую группу, обладающую субнормальным рядом, в котором все факторы абелевы и все, за исключением последнего, не имеют $p'$-кручения, можно вложить в группу с субнормальным рядом такой же длины и с такими же свойствами такую, что любая $p$-невырожденная система уравнений над этой группой разрешима в самой этой группе. Это позволяет доказать, что минимальный порядок метабелевой группы, над которой есть унимодулярное уравнение, не разрешимое в метабелевых группах, равен $42$. Библиография: 14 названий.
Математический сборник. 2024;215(6):61-76
pages 61-76 views

Точные формулы приращения функционала и необходимые условия оптимальности, альтернативные принципу Понтрягина

Погодаев Н.И., Старицын М.В.

Аннотация

Представлены элементы теории локального экстремума в задаче оптимального управления со свободным правым концом и, вообще говоря, неопределенной начальной позицией траекторий на основе точных формул приращения (вариаций бесконечного порядка) целевого функционала. Получены необходимые условия оптимальности “позиционного” типа: их формулировки содержат вспомогательные управления с обратной связью, порождающие программные управления спуска (в задаче на минимум). Предложенные условия составляют альтернативу классическому принципу Понтрягина (в некоторых частных случаях – усиливают последний), и открывают возможность построения непрямых методов локального поиска без процедур настройки параметров “глубины спуска”.Библиография: 26 названий.
Математический сборник. 2024;215(6):77-110
pages 77-110 views

Бирационально жесткие гиперповерхности с квадратичными особенностями малого ранга

Пухликов А.В.

Аннотация

Доказано, что гиперповерхности степени $M$ в ${\mathbb P}^M$, $M\geqslant 5$, имеющие, самое большее, квадратичные особенности ранга не меньше $3$ и удовлетворяющие некоторым условиям общности положения, являются бирационально сверхжесткими многообразиями Фано, а дополнение ко множеству таких гиперповерхностей имеет при $M\geqslant 8$ коразмерность не меньше $\binom{M-1}{2} + 1$ относительно естественного пространства параметров. Библиография: 18 названий.
Математический сборник. 2024;215(6):111-130
pages 111-130 views

О разрешимости краевой задачи для одного класса нелинейных систем дифференциальных уравнений с частными производными высокого порядка

Харибегашвили С.С., Мидодашвили Б.Г.

Аннотация

Для одного класса нелинейных систем уравнений в частных производных высокого порядка в цилиндрической области рассматривается краевая задача, когда на нижнем и верхнем основаниях цилиндра заданы условия типа Коши, а на боковой части границы цилиндра задано условие типа Робена. Краевая задача эквивалентным образом редуцируется к нелинейному функциональному уравнению на некотором подпространстве пространства Соболева. При выполнении некоторых условий, накладываемых на нелинейные члены, получена априорная оценка решения поставленной задачи и доказывается существование решения, а при нарушении этих условий – отсутствие решения. Обсуждается также вопрос о единственности решения.Библиография: 18 названий.
Математический сборник. 2024;215(6):131-150
pages 131-150 views

Автоматическая непрерывность локально ограниченного гомоморфизма групп Ли на коммутанте

Штерн А.И.

Аннотация

Пусть $G$ и $H$ – группы Ли, $\pi\colon G\to H$ – локально ограниченный гомоморфизм, $G'$ – коммутант группы $G$. Тогда ограничение $\pi|_{G'}$ гомоморфизма $\pi$ на $G'$ непрерывно.Библиография: 8 названий.
Математический сборник. 2024;215(6):151-158
pages 151-158 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».