О задаче Зарембы для $p$-эллиптического уравнения

Обложка
  • Авторы: Чечкина А.Г.1,2
  • Учреждения:
    1. Московский государственный университет имени М. В. Ломоносова, механико-математический факультет
    2. Институт математики с вычислительным центром — обособленное структурное подразделение Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук
  • Выпуск: Том 214, № 9 (2023)
  • Страницы: 144-160
  • Раздел: Статьи
  • URL: https://bakhtiniada.ru/0368-8666/article/view/142335
  • DOI: https://doi.org/10.4213/sm9820
  • ID: 142335

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Доказана повышенная суммируемость градиента решения задачи Зарембы в ограниченной строго липшицевой области для неоднородного $p$-эллиптического уравнения.Библиография: 33 названия.

Об авторах

Александра Григорьевна Чечкина

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет; Институт математики с вычислительным центром — обособленное структурное подразделение Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук

Email: chechkina@gmail.com
кандидат физико-математических наук, без звания

Список литературы

  1. Б. В. Боярский, “Обобщенные решения системы дифференциальных уравнений первого порядка эллиптического типа с разрывными коэффициентами”, Матем. сб., 43(85):4 (1957), 451–503
  2. N. G. Meyers, “An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 17:3 (1963), 189–206
  3. V. V. Zhikov, “On some variational problems”, Russian J. Math. Phys., 5:1 (1997), 105–116
  4. E. Acerbi, G. Mingione, “Gradient estimates for the $p(x)$-Laplacian system”, J. Reine Angew. Math., 2005:584 (2005), 117–148
  5. L. Diening, S. Schwarzsacher, “Global gradient estimates for the $p(cdot)$-Laplacian”, Nonlinear Anal., 106 (2014), 70–85
  6. G. Cimatti, G. Prodi, “Existence results for a nonlinear elliptic system modelling a temperature dependent electrical resistor”, Ann. Mat. Pura Appl. (4), 152 (1988), 227–236
  7. S. D. Howison, J. F. Rodrigues, M. Shillor, “Stationary solutions to the thermistor problem”, J. Math. Anal. Appl., 174:2 (1993), 573–588
  8. С. Заремба, “Об одной смешанной задаче, относящейся к уравнению Лапласа”, УМН, 1:3-4(13-14) (1946), 125–146
  9. G. Fichera, “Sul problema misto per le equazioni lineari alle derivate parziali del secondo ordine di tipo ellittico”, Rev. Roumaine Math. Pures Appl., 9 (1964), 3–9
  10. В. Г. Мазья, “Некоторые оценки решений эллиптических уравнений второго порядка”, Докл. АН СССР, 137:5 (1961), 1057–1059
  11. В. В. Жиков, С. Е. Пастухова, “О повышенной суммируемости градиента решений эллиптических уравнений с переменным показателем нелинейности”, Матем. сб., 199:12 (2008), 19–52
  12. M. Giaquinta, G. Modica, “Regularity results for some classes of higher order non linear elliptic systems”, J. Reine Angew. Math., 311/312 (1979), 145–169
  13. Ю. А. Алхутов, Г. А. Чечкин, “Повышенная суммируемость градиента решения задачи Зарембы для уравнения Пуассона”, Докл. РАН. Матем., информ., проц. упр., 497 (2021), 3–6
  14. Yu. A. Alkhutov, G. A. Chechkin, “The Meyer's estimate of solutions to Zaremba problem for second-order elliptic equations in divergent form”, C. R. Mecanique, 349:2 (2021), 299–304
  15. Yu. A. Alkhutov, G. A. Chechkin, V. G. Maz'ya, “Boyarsky–Meyers estimate for solutions to Zaremba problem”, Arch. Ration. Mech. Anal., 245:2 (2022), 1197–1211
  16. Ю. А. Алхутов, А. Г. Чечкина, “О многомерной задаче Зарембы для неоднородного уравнения $p$-Лапласа”, Докл. РАН. Матем., информ., проц. упр., 505 (2022), 37–41
  17. G. A. Chechkin, “The Meyers estimates for domains perforated along the boundary”, Mathematics, 9:23 (2021), 3015, 11 pp.
  18. В. Г. Мазья, Пространства С. Л. Соболева, Изд-во Ленингр. ун-та, Л., 1985, 416 с.
  19. G. A. Chechkin, Yu. O. Koroleva, L.-E. Persson, “On the precise asymptotics of the constant in Friedrich's inequality for functions vanishing on the part of the boundary with microinhomogeneous structure”, J. Inequal. Appl., 2007 (2007), 34138, 13 pp.
  20. Ж.-Л. Лионс, Некоторые методы решения нелинейных задач, Мир, М., 1972, 588 с.
  21. Г. И. Лаптев, “Условия монотонности одного класса квазилинейных дифференциальных операторов, зависящих от параметров”, Матем. заметки, 96:3 (2014), 405–417
  22. M. D. Surnachev, V. V. Zhikov, “On existence and uniqueness classes for the Cauchy problem for parabolic equations of the $p$-Laplace type”, Commun. Pure Appl. Anal., 12:4 (2013), 1783–1812
  23. В. Г. Мазья, “О непрерывности в граничной точке решений квазилинейных эллиптических уравнений”, Вестн. Ленингр. ун-та, 1970, № 13, 42–55
  24. F. W. Gehring, “The $L^p$-integrability of the partial derivatives of a quasiconformal mapping”, Acta Math., 130 (1973), 265–277
  25. И. В. Скрыпник, Методы исследования нелинейных эллиптических граничных задач, Наука, М., 1990, 448 с.
  26. D. R. Adams, N. G. Meyers, “Thinness and Wiener criteria for non-linear potentials”, Indiana Univ. Math. J., 22:2 (1972), 169–197
  27. D. R. Adams, L. I. Hedberg, Function spaces and potential theory, Grundlehren Math. Wiss., 314, Springer-Verlag, Berlin, 1996, xii+366 pp.
  28. T. Sjödin, “Capacities of compact sets in linear subspaces of $R^n$”, Pacific J. Math., 78:1 (1978), 261–266
  29. В. Г. Мазья, В. П. Хавин, “Нелинейный аналог ньютоновского потенциала и метрические свойства $(p,l)$-емкости”, Докл. АН СССР, 194:4 (1970), 770–773
  30. В. Г. Мазья, В. П. Хавин, “Нелинейная теория потенциала”, УМН, 27:6(168) (1972), 67–138
  31. Г. А. Чечкин, “Усреднение краевых задач с сингулярным возмущением граничных условий”, Матем. сб., 184:6 (1993), 99–150
  32. G. A. Chechkin, R. R. Gadyl'shin, “On boundary-value problems for the Laplacian in bounded domains with micro inhomogeneous structure of the boundaries”, Acta Math. Sin. (Engl. Ser.), 23:2 (2007), 237–248
  33. А. Л. Пятницкий, Г. А. Чечкин, А. С. Шамаев, Усреднение. Методы и приложения, Белая серия в математике и физике, 3, Тамара Рожковская, Новосибирск, 2007, 264 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Чечкина А.Г., 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».