О задаче Зарембы для $p$-эллиптического уравнения
- Авторы: Чечкина А.Г.1,2
-
Учреждения:
- Московский государственный университет имени М. В. Ломоносова, механико-математический факультет
- Институт математики с вычислительным центром — обособленное структурное подразделение Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук
- Выпуск: Том 214, № 9 (2023)
- Страницы: 144-160
- Раздел: Статьи
- URL: https://bakhtiniada.ru/0368-8666/article/view/142335
- DOI: https://doi.org/10.4213/sm9820
- ID: 142335
Цитировать
Аннотация
Ключевые слова
Об авторах
Александра Григорьевна Чечкина
Московский государственный университет имени М. В. Ломоносова, механико-математический факультет; Институт математики с вычислительным центром — обособленное структурное подразделение Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук
Email: chechkina@gmail.com
кандидат физико-математических наук, без звания
Список литературы
- Б. В. Боярский, “Обобщенные решения системы дифференциальных уравнений первого порядка эллиптического типа с разрывными коэффициентами”, Матем. сб., 43(85):4 (1957), 451–503
- N. G. Meyers, “An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 17:3 (1963), 189–206
- V. V. Zhikov, “On some variational problems”, Russian J. Math. Phys., 5:1 (1997), 105–116
- E. Acerbi, G. Mingione, “Gradient estimates for the $p(x)$-Laplacian system”, J. Reine Angew. Math., 2005:584 (2005), 117–148
- L. Diening, S. Schwarzsacher, “Global gradient estimates for the $p(cdot)$-Laplacian”, Nonlinear Anal., 106 (2014), 70–85
- G. Cimatti, G. Prodi, “Existence results for a nonlinear elliptic system modelling a temperature dependent electrical resistor”, Ann. Mat. Pura Appl. (4), 152 (1988), 227–236
- S. D. Howison, J. F. Rodrigues, M. Shillor, “Stationary solutions to the thermistor problem”, J. Math. Anal. Appl., 174:2 (1993), 573–588
- С. Заремба, “Об одной смешанной задаче, относящейся к уравнению Лапласа”, УМН, 1:3-4(13-14) (1946), 125–146
- G. Fichera, “Sul problema misto per le equazioni lineari alle derivate parziali del secondo ordine di tipo ellittico”, Rev. Roumaine Math. Pures Appl., 9 (1964), 3–9
- В. Г. Мазья, “Некоторые оценки решений эллиптических уравнений второго порядка”, Докл. АН СССР, 137:5 (1961), 1057–1059
- В. В. Жиков, С. Е. Пастухова, “О повышенной суммируемости градиента решений эллиптических уравнений с переменным показателем нелинейности”, Матем. сб., 199:12 (2008), 19–52
- M. Giaquinta, G. Modica, “Regularity results for some classes of higher order non linear elliptic systems”, J. Reine Angew. Math., 311/312 (1979), 145–169
- Ю. А. Алхутов, Г. А. Чечкин, “Повышенная суммируемость градиента решения задачи Зарембы для уравнения Пуассона”, Докл. РАН. Матем., информ., проц. упр., 497 (2021), 3–6
- Yu. A. Alkhutov, G. A. Chechkin, “The Meyer's estimate of solutions to Zaremba problem for second-order elliptic equations in divergent form”, C. R. Mecanique, 349:2 (2021), 299–304
- Yu. A. Alkhutov, G. A. Chechkin, V. G. Maz'ya, “Boyarsky–Meyers estimate for solutions to Zaremba problem”, Arch. Ration. Mech. Anal., 245:2 (2022), 1197–1211
- Ю. А. Алхутов, А. Г. Чечкина, “О многомерной задаче Зарембы для неоднородного уравнения $p$-Лапласа”, Докл. РАН. Матем., информ., проц. упр., 505 (2022), 37–41
- G. A. Chechkin, “The Meyers estimates for domains perforated along the boundary”, Mathematics, 9:23 (2021), 3015, 11 pp.
- В. Г. Мазья, Пространства С. Л. Соболева, Изд-во Ленингр. ун-та, Л., 1985, 416 с.
- G. A. Chechkin, Yu. O. Koroleva, L.-E. Persson, “On the precise asymptotics of the constant in Friedrich's inequality for functions vanishing on the part of the boundary with microinhomogeneous structure”, J. Inequal. Appl., 2007 (2007), 34138, 13 pp.
- Ж.-Л. Лионс, Некоторые методы решения нелинейных задач, Мир, М., 1972, 588 с.
- Г. И. Лаптев, “Условия монотонности одного класса квазилинейных дифференциальных операторов, зависящих от параметров”, Матем. заметки, 96:3 (2014), 405–417
- M. D. Surnachev, V. V. Zhikov, “On existence and uniqueness classes for the Cauchy problem for parabolic equations of the $p$-Laplace type”, Commun. Pure Appl. Anal., 12:4 (2013), 1783–1812
- В. Г. Мазья, “О непрерывности в граничной точке решений квазилинейных эллиптических уравнений”, Вестн. Ленингр. ун-та, 1970, № 13, 42–55
- F. W. Gehring, “The $L^p$-integrability of the partial derivatives of a quasiconformal mapping”, Acta Math., 130 (1973), 265–277
- И. В. Скрыпник, Методы исследования нелинейных эллиптических граничных задач, Наука, М., 1990, 448 с.
- D. R. Adams, N. G. Meyers, “Thinness and Wiener criteria for non-linear potentials”, Indiana Univ. Math. J., 22:2 (1972), 169–197
- D. R. Adams, L. I. Hedberg, Function spaces and potential theory, Grundlehren Math. Wiss., 314, Springer-Verlag, Berlin, 1996, xii+366 pp.
- T. Sjödin, “Capacities of compact sets in linear subspaces of $R^n$”, Pacific J. Math., 78:1 (1978), 261–266
- В. Г. Мазья, В. П. Хавин, “Нелинейный аналог ньютоновского потенциала и метрические свойства $(p,l)$-емкости”, Докл. АН СССР, 194:4 (1970), 770–773
- В. Г. Мазья, В. П. Хавин, “Нелинейная теория потенциала”, УМН, 27:6(168) (1972), 67–138
- Г. А. Чечкин, “Усреднение краевых задач с сингулярным возмущением граничных условий”, Матем. сб., 184:6 (1993), 99–150
- G. A. Chechkin, R. R. Gadyl'shin, “On boundary-value problems for the Laplacian in bounded domains with micro inhomogeneous structure of the boundaries”, Acta Math. Sin. (Engl. Ser.), 23:2 (2007), 237–248
- А. Л. Пятницкий, Г. А. Чечкин, А. С. Шамаев, Усреднение. Методы и приложения, Белая серия в математике и физике, 3, Тамара Рожковская, Новосибирск, 2007, 264 с.
Дополнительные файлы
