


Том 214, № 9 (2023)
Биллиард с проскальзыванием на любой рациональный угол
Аннотация
Изучается класс биллиардов в круге с проскальзыванием на соизмеримый с $\pi$ угол вдоль граничной окружности. Для таких биллиардов показано, что изоэнергетическая поверхность биллиарда гомеоморфна некоторому линзовому пространству $L(q,p)$ с параметрами $0 < p < q$. Множество тех пар $(q, p)$, для которых существует биллиард в круге с проскальзыванием, реализующий соответствующее линзовое пространство $L(q,p)$, описано в терминах множества решений линейного диофантова уравнения с двумя переменными. Полученный результат остается верен для плоских биллиардов с проскальзыванием в односвязных областях с гладкой границей, т.е. не ограничивается интегрируемым случаем.
Библиография: 30 названий.



Построение инвариантных норм Ляпунова планарных динамических систем
Аннотация
Рассматривается задача об устойчивости линейных динамических систем с переключениями. Известно, что неприводимая $d$-мерная система всегда имеет инвариантную норму Ляпунова (норму Барабанова), определяющую устойчивость системы и порядок роста ее траекторий. Мы доказываем, что в случае $d=2$ инвариантная норма является кусочно аналитической функцией и может быть построена в явном виде для любой системы с конечным числом матриц. Представлены метод построения, алгоритм вычисления показателя Ляпунова и способ определения устойчивости системы. Получена полная классификация инвариантных норм планарных систем. Доказан критерий единственности инвариантной нормы у заданной системы, а также исследованы нормы специального вида (нормы, порожденные многоугольниками и т.д.).Библиография: 30 названий.



Следы пространств Соболева на нерегулярных подмножествах метрических пространств с мерой
Аннотация
При $p \in (1,\infty)$ пусть $(\operatorname{X},\operatorname{d},\mu)$ – метрическое пространство с равномерно локально удваивающей мерой $\mu$, допускающее слабое локальное $(1,p)$-неравенство Пуанкаре. При каждом $\theta \in [0,p)$ мы характеризуем след пространства Соболева $W^{1}_{p}(\operatorname{X})$ на замкнутых множествах $S \subset \operatorname{X}$, удовлетворяющих условию регулярности $\theta$-коразмерностного обхвата снизу. В частности, если пространство $(\operatorname{X},\operatorname{d},\mu)$ является $Q$-регулярным по Альфорсу при некоторых $Q \geq 1$ и $p \in (Q,\infty)$, то мы получаем внутреннее описание следа пространства Соболева $W^{1}_{p}(\operatorname{X})$ на произвольных непустых замкнутых множествах $S \subset \operatorname{X}$. Библиография: 43 названия.






Относительная оптимальность в нелинейных дифференциальных играх с дискретным управлением
Аннотация
Рассматриваются две задачи управления с помехой, в качестве которой выступает второй игрок в дифференциальной игре. Динамика первой задачи описывается нелинейной системой дифференциальных уравнений первого порядка, динамика второй – нелинейной системой дифференциальных уравнений второго порядка. Управление осуществляется посредством кусочно постоянного управления, множество значений которого является конечным. Целью управления является движение сколь угодно близко к конечной траектории, описываемой вспомогательной системой управления простого вида, при любых действиях помехи. В обеих задачах получены фазовые ограничения на вспомогательную систему, в рамках которых управление вспомогательной системы может быть любым. Для любой окрестности и произвольного управления вспомогательной системы, которое удовлетворяет полученным ограничениям, в исходных задачах существуют допустимые управления, обеспечивающие в каждый момент времени нахождение фазовой точки исходной системы в указанной окрестности соответствующей фазовой точки вспомогательной системы. Таким образом, с учетом полученных ограничений, выбирая управление вспомогательной системы оптимальным в каком-либо смысле, можно осуществить сколь угодно близкое движение исходной системы к такому решению вспомогательной системы при любых действиях помехи. Библиография: 29 названий.


