Explicit deformation of the horospherical variety of type $G_2$
- Авторлар: Kuznetsov A.G.1
-
Мекемелер:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Шығарылым: Том 214, № 8 (2023)
- Беттер: 63-73
- Бөлім: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/133542
- DOI: https://doi.org/10.4213/sm9897
- ID: 133542
Дәйексөз келтіру
Аннотация
We give two simple geometric constructions of a smooth family of projective varieties with central fiber isomorphic to the horospherical variety of type
Негізгі сөздер
Авторлар туралы
Alexander Kuznetsov
Steklov Mathematical Institute of Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: akuznet@mi-ras.ru
Doctor of physico-mathematical sciences, no status
Әдебиет тізімі
- R. Gonzales, C. Pech, N. Perrin, A. Samokhin, “Geometry of horospherical varieties of Picard rank one”, Int. Math. Res. Not. IMRN, 2022:12 (2022), 8916–9012
- А. Г. Кузнецов, “Гиперплоские сечения и производные категории”, Изв. РАН. Сер. матем., 70:3 (2006), 23–128
- A. Kuznetsov, “Exceptional collections for Grassmannians of isotropic lines”, Proc. Lond. Math. Soc. (3), 97:1 (2008), 155–182
- A. Kuznetsov, “Base change for semiorthogonal decompositions”, Compos. Math., 147:3 (2011), 852–876
- А. Г. Кузнецов, “О линейных сечениях спинорного 10-мерного многообразия. I”, Изв. РАН. Сер. матем., 82:4 (2018), 53–114
- A. Kuznetsov, “Derived equivalence of Ito–Miura–Okawa–Ueda Calabi–Yau 3-folds”, J. Math. Soc. Japan, 70:3 (2018), 1007–1013
- B. Pasquier, “On some smooth projective two-orbit varieties with Picard number 1”, Math. Ann., 344:4 (2009), 963–987
- B. Pasquier, N. Perrin, “Local rigidity of quasi-regular varieties”, Math. Z., 265:3 (2010), 589–600
Қосымша файлдар
