On the solvability of the boundary value problem for one class of nonlinear systems of high-order partial differential equations
- Authors: Kharibegashvili S.S.1,2, Midodashvili B.G.3
-
Affiliations:
- A. Razmadze Mathematical Institute, Georgian Academy of Sciences
- Georgian Technical University
- Tbilisi Ivane Javakhishvili State University
- Issue: Vol 215, No 6 (2024)
- Pages: 131-150
- Section: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/256519
- DOI: https://doi.org/10.4213/sm10029
- ID: 256519
Cite item
Abstract
About the authors
Sergei Sergeevich Kharibegashvili
A. Razmadze Mathematical Institute, Georgian Academy of Sciences; Georgian Technical University
Email: kharibegashvili@yahoo.com
Doctor of physico-mathematical sciences, Professor
Bidzina Grigorievich Midodashvili
Tbilisi Ivane Javakhishvili State University
References
- Л. Хeрмандер, Анализ линейных дифференциальных операторов с частными производными, т. 2, Дифференциальные операторы с постоянными коеффициентами, Мир, М., 1986, 456 с.
- S. Kharibegashvili, B. Midodashvili, “On the solvability of one boundary value problem for a class of higher-order nonlinear partial differential equations”, Mediterr. J. Math., 18:4 (2021), 131, 18 pp.
- S. Kharibegashvili, B. Midodashvili, “The boundary value problem for one class of higher-order semilinear partial differential equations”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 49:1 (2023), 154–171
- Э. Митидиери, С. И. Похожаев, “Априорные оценки и отсутствие решений нелинейных уравнений и неравенств в частных производных”, Тр. МИАН, 234, Наука, МАИК «Наука/Интерпериодика», М., 2001, 3–383
- V. A. Galaktionov, E. L. Mitidieri, S. I. Pohozaev, Blow-up for higher-order parabolic, hyperbolic, dispersion and Schrödinger equations, Monogr. Res. Notes Math., CRC Press, Boca Raton, FL, 2015, xxvi+543 pp.
- Guowang Chen, Ruili Song, Shubin Wang, “Local existence and global nonexistence theorems for a damped nonlinear hyperbolic equation”, J. Math. Anal. Appl., 368:1 (2010), 19–31
- Tengyu Ma, Juan Gu, Longsuo Li, “Asymptotic behavior of solutions to a class of fourth-order nonlinear evolution equations with dispersive and dissipative terms”, J. Inequal. Appl., 2016 (2016), 318, 7 pp.
- Jiangbo Han, Runzhang Xu, Yanbing Yang, “Asymptotic behavior and finite time blow up for damped fourth order nonlinear evolution equation”, Asymptot. Anal., 122:3-4 (2021), 349–369
- S. Kharibegashvili, B. Midodashvili, “Solvability of characteristic boundary-value problems for nonlinear equations with iterated wave operator in the principal part”, Electron. J. Differential Equations, 2008 (2008), 72, 12 pp.
- S. Kharibegashvili, “Boundary value problems for some classes of nonlinear wave equations”, Mem. Differential Equations Math. Phys., 46 (2009), 1–114
- S. Kharibegashvili, B. Midodashvili, “A boundary value problem for higher-order semilinear partial differential equations”, Complex Var. Elliptic Equ., 64:5 (2019), 766–776
- S. Kharibegashvili, B. Midodashvili, “On the solvability of one boundary value problem for one class of higher-order semilinear hyperbolic systems”, Lith. Math. J., 62:3 (2022), 360–371
- С. С. Харибегашвили, Б. Г. Мидодашвили, “О разрешимости специальной краевой задачи в цилиндрической области для одного класса нелинейных систем дифференциальных уравнений с частными производными”, Диффенц. уравнения, 58:1 (2022), 82–92
- О. А. Ладыженская, Краевые задачи математической физики, Наука, М., 1973, 407 с.
- А. Куфнер, С. Фучик, Нелинейные дифференциальные уравнения, Наука, М., 1988, 304 с.
- W. McLean, Strongly elliptic systems and boundary integral equations, Cambridge Univ. Press, Cambridge, 2000, xiv+357 pp.
- В. А. Треногин, Функциональный анализ, 2-е изд., Наука, М., 1993, 440 с.
- Г. М. Фихтенгольц, Курс дифференциального и интегрального исчисления, т. 1, 7-е стер. изд., Наука, М., 1969, 608 с.
Supplementary files
