On a property of the Rademacher system and $\Lambda(2)$-spaces
- Authors: Astashkin S.V.1,2,3,4, Semenov E.M.5
 - 
							Affiliations: 
							
- Samara National Research University
 - Lomonosov Moscow State University
 - Moscow Center for Fundamental and Applied Mathematics
 - Bahçesehir University
 - Voronezh State University
 
 - Issue: Vol 215, No 3 (2024)
 - Pages: 3-20
 - Section: Articles
 - URL: https://bakhtiniada.ru/0368-8666/article/view/254270
 - DOI: https://doi.org/10.4213/sm9922
 - ID: 254270
 
Cite item
Abstract
The closed linear span of the Rademacher functions in L2[0,1] contains functions with arbitrarily large distribution, provided that the ratio of this distribution to the distribution of a standard normal variable tends to zero. A similar result is also obtained for some classes of Λ(2)-spaces.
About the authors
Sergei Vladimirovich Astashkin
Samara National Research University; Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics; Bahçesehir University
							Author for correspondence.
							Email: astash@ssau.ru
				                	ORCID iD: 0000-0002-8239-5661
				                																			                								Doctor of physico-mathematical sciences, Professor				                								 						
Evgenii Mikhailovich Semenov
Voronezh State University
														Email: nadezhka_ssm@geophys.vsu.ru
				                					                																			                								Doctor of physico-mathematical sciences, Professor				                								 						
References
- А. Зигмунд, Тригонометрические ряды, т. 1, Мир, М., 1965, 615 с.
 - V. A. Rodin, E. M. Semyonov, “Rademacher series in symmetric spaces”, Anal. Math., 1:3 (1975), 207–222
 - J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, v. II, Ergeb. Math. Grenzgeb., 97, Function spaces, Springer-Verlag, Berlin–New York, 1979, x+243 pp.
 - С. В. Асташкин, Система Радемахера в функциональных пространствах, Физматлит, М., 2017, 549 с.
 - С. В. Асташкин, Е. М. Семенов, “Пространства, определяемые функцией Пэли”, Матем. сб., 204:7 (2013), 3–24
 - F. Albiac, N. J. Kalton, Topics in Banach space theory, Grad. Texts in Math., 233, Springer, New York, 2006, xii+373 pp.
 - W. Rudin, “Trigonometric series with gaps”, J. Math. Mech., 9 (1960), 203–227
 - J. Bourgain, “Bounded orthogonal systems and the $Lambda(p)$-set problem”, Acta Math., 162:3-4 (1989), 227–245
 - Н. Н. Вахания, В. И. Тариеладзе, С. А. Чобанян, Вероятностные распределения в банаховых пространствах, Наука, М., 1985, 368 с.
 - С. Г. Крейн, Ю. И. Петунин, Е. М. Семенов, Интерполяция линейных операторов, Наука, М., 1978, 400 с.
 - C. Bennett, R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Inc., Boston, MA, 1988, xiv+469 pp.
 - М. А. Красносельский, Я. Б. Рутицкий, Выпуклые функции и пространства Орлича, Физматгиз, М., 1958, 271 с.
 - M. M. Rao, Z. D. Ren, Theory of Orlicz spaces, Monogr. Textbooks Pure Appl. Math., 146, Marcel Dekker, Inc., New York, 1991, xii+449 pp.
 - C. Bennett, R. A. DeVore, R. Sharpley, “Weak-$L^infty$ and BMO”, Ann. of Math. (2), 113:3 (1981), 601–611
 - A. Korenovskiĭ, Mean oscillations and equimeasurable rearrangements of functions, Lect. Notes Unione Mat. Ital., 4, Springer-Verlag, Berlin–Heidelberg, 2007, viii+188 pp.
 - Б. С. Кашин, А. А. Саакян, Ортогональные ряды, 2-е изд., АФЦ, М., 1999, x+550 с.
 - С. В. Асташкин, “Системы случайных величин, эквивалентные по распределению системе Радемахера, и $mathscr{K}$-замкнутая представимость банаховых пар”, Матем. сб., 191:6 (2000), 3–30
 - M. I. Kadec, A. Pelczynski, “Bases, lacunary sequences and complemented subspaces in the spaces $L_{p}$”, Studia Math., 21:2 (1962), 161–176
 
Supplementary files
				
			
					
						
						
						
						
				

