Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 214, No 10 (2023)

Cover Page

Full Issue

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abnormal extremals in the sub-Riemannian problem for a general model of a robot with a trailer

Ardentov A.A., Artemova E.M.

Abstract

A symmetric mathematical model of a wheeled robot with a trailer is considered for various types of coupling between the robot and the trailer. It is shown that for fixed coupling parameters and fixed initial position of the robot with trailer there are two symmetric abnormal extremals. In motion along these trajectories the robot and the trailer traverse normal extremal trajectories for the sub-Riemannian problem on the group of motions of the plane; the coupling point always draws an inflectional elastica or a straight line.

Matematicheskii Sbornik. 2023;214(10):3-24
pages 3-24 views

On a weak topology for Hadamard spaces

Bёrdёllima A.

Abstract

We investigate whether existing notions of weak sequential convergence in Hadamard spaces can be induced by a topology. We provide an affirmative answer on what we call weakly proper Hadamard spaces. Several results from classical functional analysis are extended to the setting of Hadamard spaces. A notion of dual space is proposed and it is shown that our weak topology and dual space coincide with the standard ones in the case of a Hilbert space. We introduce the space of geodesic segments together with a corresponding weak topology, and we show that this space is homeomorphic to its underlying Hadamard space. As an application we show the existence of a geodesic segment that acts as the direction of steepest descent for a geodesically differentiable function satisfying certain properties. Finally we compare our topology with other existing notions of weak topologies.
Matematicheskii Sbornik. 2023;214(10):25-43
pages 25-43 views

Complete bipartite graphs flexible in the plane

Kovalev M.D., Orevkov S.Y.

Abstract

A complete bipartite graph $K_{3,3}$, considered as a planar linkage with joints at the vertices and with rods as edges, is in general inflexible, that is, it admits only motions as a whole. Two types of its paradoxical mobility were found by Dixon in 1899. Later on, in a series of papers by several different authors the question of the flexibility of $K_{m,n}$ was solved for almost all pairs $(m,n)$. We solve it for all complete bipartite graphs in the Euclidean plane, as well as on the sphere and hyperbolic plane. We give independent self-contained proofs without extensive computations, which are almost the same in the Euclidean, hyperbolic and spherical cases.

Matematicheskii Sbornik. 2023;214(10):44-70
pages 44-70 views

On the eigenfunctions of the essential spectrum of the model problem for the Schrödinger operator with singular potential

Lyalinov M.A.

Abstract

We are concerned with generalized eigenfunctions of the continuous (essential) spectrum for the Schrödinger operator with singular δ-potential that has support on the sides of an angle in the plane. Operators of this kind appear in quantum-mechanical models for quantum state destruction of two point-interacting quantum particles of which one is reflected by a potential barrier. We propose an approach capable of constructing integral representations for eigenfunctions in terms of the solution of a functional-difference equation with spectral parameter. Solutions of this equation are studied by reduction to an integral equation, with the subsequent study of the spectral properties of the corresponding integral operator. We also construct an asymptotic formula for the eigenfunction at large distances. For this formula a physical interpretation from the point of view of wave scattering is given.
Our approach can be used to deal with eigenfunctions in a broad class of related problems for the Schrödinger operator with singular potential.

Matematicheskii Sbornik. 2023;214(10):71-97
pages 71-97 views

Generic extensions of ergodic systems

Ryzhikov V.V.

Abstract

The paper is devoted to problems concerning the generic properties of extensions of dynamical systems with invariant measures. It is proved that generic extensions preserve the singularity of the spectrum, the mixing property and some other asymptotic properties. It is discovered that the preservation of algebraic properties generally depends on statistical properties of the base. It is established that the P">P-entropy of a generic extension is infinite. This fact yields a new proof of the result due to Weiss, Glasner, Austin and Thouvenot on the nondominance of deterministic actions. Generic measurable families of automorphisms of a probability space are considered. It is shown that the asymptotic behaviour of representatives of a generic family is characterized by a combination of dynamic conformism and dynamic individualism.

Matematicheskii Sbornik. 2023;214(10):98-115
pages 98-115 views

Efficient computations with counting functions on free groups and free monoids

Talambutsa A.L., Hartnick T.

Abstract

We present efficient algorithms to decide whether two given counting functions on nonabelian free groups or monoids are at bounded distance from each other and to decide whether two given counting quasimorphisms on nonabelian free groups are cohomologous. We work in the multi-tape Turing machine model with nonconstant-time arithmetic operations. In the case of integer coefficients we construct an algorithm of linear time complexity (assuming that the rank is at least 3 in the monoid case). In the case of rational coefficients we prove that the time complexity is O(NlogN), where N denotes the size of the input, that is, it is the same as in addition of rational numbers (implemented using the Harvey-van der Hoeven algorithm for integer multiplication). These algorithms are based on our previous work which characterizes bounded counting functions.

Matematicheskii Sbornik. 2023;214(10):116-162
pages 116-162 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».