Efficient computations with counting functions on free groups and free monoids
- Authors: Talambutsa A.L.1, Hartnick T.2
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Karlsruhe Institute of Technology
- Issue: Vol 214, No 10 (2023)
- Pages: 116-162
- Section: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/140519
- DOI: https://doi.org/10.4213/sm9683
- ID: 140519
Cite item
Abstract
We present efficient algorithms to decide whether two given counting functions on nonabelian free groups or monoids are at bounded distance from each other and to decide whether two given counting quasimorphisms on nonabelian free groups are cohomologous. We work in the multi-tape Turing machine model with nonconstant-time arithmetic operations. In the case of integer coefficients we construct an algorithm of linear time complexity (assuming that the rank is at least 3 in the monoid case). In the case of rational coefficients we prove that the time complexity is O(NlogN), where N denotes the size of the input, that is, it is the same as in addition of rational numbers (implemented using the Harvey-van der Hoeven algorithm for integer multiplication). These algorithms are based on our previous work which characterizes bounded counting functions.
About the authors
Alexey Leonidovich Talambutsa
Steklov Mathematical Institute of Russian Academy of Sciences
Author for correspondence.
Email: altal@mi-ras.ru
Candidate of physico-mathematical sciences, no status
Tobias Hartnick
Karlsruhe Institute of Technology
Email: tobias.hartnick@kit.de
References
- R. Brooks, “Some remarks on bounded cohomology”, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook conference (State Univ. New York, Stony Brook, NY, 1978), Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, NJ, 1981, 53–63
- D. Calegari, scl, MSJ Mem., 20, Math. Soc. Japan, Tokyo, 2009, xii+209 pp.
- S. Cook, On the minimum computation time of functions, Ph.D. thesis, Harvard Univ., Cambridge, MA, 1966
- Т. Кормен, Ч. Лейзерсон, Р. Ривест, К. Штайн, Алгоритмы: построение и анализ, Вильямс, М., 2011, 1296 с.
- R. Frigerio, Bounded cohomology of discrete groups, Math. Surveys Monogr., 227, Amer. Math. Soc., Providence, RI, 2017, xvi+193 pp.
- R. I. Grigorchuk, “Some results on bounded cohomology”, Combinatorial and geometric group theory (Edinburgh, 1993), London Math. Soc. Lecture Notes Ser., 204, Cambridge Univ. Press, Cambridge, 1995, 111–163
- T. Hartnick, P. Schweitzer, “On quasioutomorphism groups of free groups and their transitivity properties”, J. Algebra, 450 (2016), 242–281
- T. Hartnick, A. Sisto, “Bounded cohomology and virtually free hyperbolically embedded subgroups”, Groups Geom. Dyn., 13:2 (2019), 677–694
- T. Hartnick, A. Talambutsa, “Relations between counting functions on free groups and free monoids”, Groups Geom. Dyn., 12:4 (2018), 1485–1521
- A. Hase, Dynamics of $operatorname{Out}(F_n)$ on the second bounded cohomology of $F_n$
- D. Harvey, J. van der Hoeven, “Integer multiplication in time $O(nlog n)$”, Ann. of Math. (2), 193:2 (2021), 563–617
- J. E. Hopcroft, R. Motwani, J. D. Ullman, Introduction to automata theory, languages, and computation, 3rd ed., Pearson Education, Inc., Boston, MA, 2006, xvii+535 pp.
- P. Kiyashko, Bases for counting functions on free monoids and groups
- I. Krasikov, Y. Roditty, “On a reconstruction problem for sequences”, J. Combin. Theory Ser. A, 77:2 (1997), 344–348
- V. I. Levenstein, “Efficient reconstruction of sequences from their subsequences and supersequences”, J. Combin. Theory Ser. A, 93:2 (2001), 310–332
- M. Lothaire, Combinatorics on words, Cambridge Math. Lib., 2nd ed., Cambridge Univ. Press, Cambridge, 1997, xviii+238 pp.
- D. Osin, “Acylindrically hyperbolic groups”, Trans. Amer. Math. Soc., 368:2 (2016), 851–888
- M. V. Sapir, Combinatorial algebra: syntax and semantics, With contributions by V. S. Guba, M. V. Volkov, Springer Monogr. Math., Springer, Cham, 2014, xvi+355 pp.
- A. Schonhage, V. Strassen, “Schnelle Multiplikation grosser Zahlen”, Computing (Arch. Elektron. Rechnen), 7 (1971), 281–292
- А. Л. Тоом, “О сложности схемы из функциональных элементов, реализующей умножение целых чисел”, Докл. АН СССР, 150:3 (1963), 496–498
Supplementary files
