Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 213, № 11 (2022)

Обложка

Андрею Александровичу Гончару

- -.
Математический сборник. 2022;213(11):3-4
pages 3-4 views

Необходимые и достаточные условия продолжения функции до функции Каратеодори

Буслаев В.И.

Аннотация

Сформулирован и доказан критерий возможности продолжения функции, заданной своими значениями с учетом кратностей в последовательности точек круга $\mathbb D=\{ |z|<1\}$, до функции, голоморфной и принимающей в $\mathbb D$ значения с неотрицательной действительной частью. Когда функция задается значениями своих производных в точке $z=0$, полученный критерий совпадает с известным критерием Каратеодори. Показано, что критерий Каратеодори является следствием критерия Шура и, наоборот, критерий Шура является следствием критерия Каратеодори.Библиография: 10 названий.
Математический сборник. 2022;213(11):5-24
pages 5-24 views

Конформность по Громову и голоморфность

Зорич В.А.

Аннотация

Рассматривается отображение $w=f(z_1, …,z_n) $, конформное в смысле Громова, и указывается критерий его голоморфности. Библиография: 5 названий.
Математический сборник. 2022;213(11):25-30
pages 25-30 views

Нули, оценки и асимптотики для ортогональных полиномов на единичной окружности

Любински Д.Ш.

Аннотация

Пусть $\mu $ – мера на единичной окружности, регулярная в смысле Шталя, Тотика и Ульмана. Пусть $\{\varphi_{n}\} $ – ортонормированные полиномы относительно веса $\mu $ и $ż_{jn}\} $ – их нули. Предположим, что $\mu $ абсолютно непрерывна на дуге $\Delta $ единичной окружности, причем $\mu'$ положительна и непрерывна на этой дуге. Мы показываем, что равномерная ограниченность ортонормированных полиномов на дугах $\Gamma $, содержащихся в дуге $\Delta $, равносильна определенному асимптотическому поведению нулей этих полиномов внутри секторов, опирающихся на $\Gamma $. Аналогично, выполнение равномерного предельного соотношения $\lim_{n\to \infty}|\varphi_{n}(z)|^{2}\mu'(z)=1$ равносильно наличию соответствующих асимптотик для нулей в таких секторах. Библиография: 27 названий.
Математический сборник. 2022;213(11):31-49
pages 31-49 views

Перечисление целочисленных триангуляций: уравнения Фредгольма в комбинаторике

Оревков С.Ю.

Аннотация

Пусть $f(m,n)$ – число примитивных целочисленных триангуляций прямоугольника $m\times n$. Вычислены пределы $\lim_n f(m,n)^{1/n}$ при $m=2,3$. При $m=2$ найдено точное значение предела, равное $(611+\sqrt{73})/36$. При $m=3$ предел выражен в терминах интегрального уравнения Фредгольма на некоторые производящие функции. Это дает алгоритм, вычисляющий значение предела с любой точностью за полиномиальное время (полиномиальное относительно количества найденных цифр).Библиография: 13 названий.
Математический сборник. 2022;213(11):50-78
pages 50-78 views

Об одном обобщении дискретной формулы Родрига для многочленов Мейкснера

Сорокин В.Н.

Аннотация

Изучается обобщение многочленов Мейкснера, приводящее к новой конструкции приближений Апери. В терминах алгебраических функций получено предельное распределение нулей масштабированных многочленов. Это распределение является решением некоторой векторной задачи равновесия теории логарифмического потенциала.Библиография: 21 название.
Математический сборник. 2022;213(11):79-101
pages 79-101 views

Прямое доказательство теоремы Шталя для некоторого класса алгебраических функций

Суетин С.П.

Аннотация

В предположении о существовании $S$-компакта Шталя приводится короткое доказательство существования предельного распределения нулей полиномов Паде и сходимости по емкости соответствующих диагональных аппроксимаций Паде для некоторого достаточно общего класса алгебраических функций. Приведенное доказательство прямое, а не методом от противного, как это сделано в оригинальных работах Шталя. Ограничение на класс алгебраических функций означает, в частности, что все критические точки римановой поверхности рассматриваемой функции второго порядка (т.е. все ветвления алгебраической функции квадратичные). В качестве следствия для рассматриваемого класса алгебраических функций доказана справедливость одной из гипотез Гончара, связанных с аппроксимациями Паде.При доказательстве не используется свойство ортогональности, справедливое для полиномов Паде; оно основано только на принципе максимума.Библиография: 19 названий.
Математический сборник. 2022;213(11):102-117
pages 102-117 views

О голоморфных отображениях строго псевдовыпуклых областей

Сухов А.Б.

Аннотация

Исследуется граничная регулярность собственных голоморфных отображений между строго псевдовыпуклыми областями с границами класса $C^2$. Устанавливается обобщение теоремы Вонга–Розея на кусочно гладкие строго псевдовыпуклые области.Библиография: 37 названий.
Математический сборник. 2022;213(11):118-142
pages 118-142 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».