В работе рассмотрены суммы Биркгофа $f(n,x,h)$ для непрерывных функций $f$ с нулевым средним на окружности, порожденные поворотами на углы $2\pi h$, где число $h$ иррациональное. Основной результат утверждает, что единственным ограничением на скорость роста последовательности $\max_x f(n,x,h) $ при $n \to \infty$ является равномерное стремление к нулю средних Биркгофа $\frac{1}{n}f(n,x,h)$. А именно показано, что для любой последовательности $\sigma_k \to 0$ и для любого иррационального $h$ существует такая функция $f$, что последовательность $\max_x f(n,x,h) $ растет быстрее, чем $n\sigma_n$, а также что для любой функции $f$, не являющейся тригонометрическим многочленом, существуют иррациональные $h$, при которых некоторая подпоследовательность $\max_x f(n_k,x,h)$ растет быстрее, чем соответствующая подпоследовательность $n_k\sigma_{n_k}$.Даны приложения к исследованию операторов взвешенного сдвига, порожденных иррациональными поворотами, и их резольвент; показано, что резольвента такого оператора может возрастать сколь угодно быстро при приближении к спектру.Библиография: 46 названий.