The predicate version of the joint logic of problems and propositions
- Авторлар: Onoprienko A.A.1
-
Мекемелер:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Шығарылым: Том 213, № 7 (2022)
- Беттер: 97-120
- Бөлім: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/133456
- DOI: https://doi.org/10.4213/sm9608
- ID: 133456
Дәйексөз келтіру
Аннотация
Негізгі сөздер
Авторлар туралы
Anastasiya Onoprienko
Steklov Mathematical Institute of Russian Academy of Sciences
Email: ansidiana@yandex.ru
without scientific degree, no status
Әдебиет тізімі
- S. A. Melikhov, A Galois connection between classical and intuitionistic logics. I: Syntax, 2013–2017
- S. A. Melikhov, A Galois connection between classical and intuitionistic logics. II: Semantics, 2015–2018
- А. А. Оноприенко, “Семантика типа Крипке для пропозициональной логики задач и высказываний”, Матем. сб., 211:5 (2020), 98–125
- S. Artemov, T. Protopopescu, “Intuitionistic epistemic logic”, Rev. Symb. Log., 9:2 (2016), 266–298
- А. Н. Колмогоров, Избранные труды. Математика и механика, Наука, М., 1985, 470 с.
- А. Н. Колмогоров, “О принципе tertium non datur”, Матем. сб., 32:4 (1925), 646–667
- А. Гейтинг, Интуиционизм. Введение, Мир, М., 1965, 200 с.
- S. A. Melikhov, Mathematical semantics of intuitionistic logic, 2015–2017
- A. S. Troelstra, “Aspects of constructive mathematics”, Handbook of mathematical logic, Stud. Logic Found. Math., 90, North-Holland, Amsterdam, 1977, 973–1052
- A. S. Troelstra, H. Schwichtenberg, Basic proof theory, Cambridge Tracts Theoret. Comput. Sci., 43, Cambridge Univ. Press, Cambridge, 1996, xii+343 pp.
- G. Kreisel, “Perspectives in the philosophy of pure mathematics”, Logic, methodology and philosophy of science (Bucharest, 1971), v. IV, Stud. Logic Found. Math., 74, North-Holland, Amsterdam, 1973, 255–277
- P. Martin-Löf, Intuitionistic type theory, Notes by G. Sambin, Stud. Proof Theory Lecture Notes, 1, Bibliopolis, Naples, 1984, iv+91 pp.
- С. К. Клини, Введение в метаматематику, ИЛ, М., 1957, 526 с.
- S. N. Artemov, “Explicit provability and constructive semantics”, Bull. Symbolic Logic, 7:1 (2001), 1–36
- С. Н. Артeмов, “Подход Колмогорова и Гeделя к интуиционистской логике и работы последнего десятилетия в этом направлении”, УМН, 59:2(356) (2004), 9–36
- K. Gödel, “Eine Interpretation des intuitionistischen Aussagenkalküls”, Ergebnisse math. Kolloquium Wien, 4 (1933), 39–40
- K. Gödel, “Vortrag bei Zilsel (*1938a)”, Collected works, v. III, ed. S. Feferman, Oxford Univ. Press, New York–Oxford, 1995, 86–113
- S. C. Kleene, “On the interpretation of intuitionistic number theory”, J. Symbolic Logic, 10:4 (1945), 109–124
- Ю. Т. Медведев, “Финитные задачи”, Докл. АН СССР, 142:5 (1962), 1015–1018
- A. S. Troelstra, D. van Dalen, Constructivism in mathematics, v. I, II, Stud. Logic Found. Math., 121, 123, North-Holland Publishing Co., Amsterdam, 1988, xx+342 and XIV pp., xviii and 345–880 and LII pp.
- Junhua Yu, “Self-referentiality of Brouwer–Heyting–Kolmogorov semantics”, Ann. Pure Appl. Logic, 165:1 (2014), 371–388
- S. Artemov, T. Protopopescu, “Intuitionistic epistemic logic”, Rev. Symb. Log., 9:2 (2016), 266–298
- R. I. Goldblatt, “Grothendieck topology as geometric modality”, Z. Math. Logik Grundlagen Math., 27:31-35 (1981), 495–529
- А. Г. Драгалин, Математический интуиционизм. Введение в теорию доказательств, Наука, М., 1979, 256 с.
- M. Fairtlough, M. Mendler, “Propositional lax logic”, Inform. and Comput., 137:1 (1997), 1–33
- M. V. H. Fairtlough, M. Walton, Quantified lax logic, Tech. rep. CS-97-11, Univ. of Sheffield, 1997, 79 pp.
- P. Aczel, “The Russell–Prawitz modality”, Math. Structures Comput. Sci., 11:4 (2001), 541–554
- R. Goldblatt, “Cover semantics for quantified lax logic”, J. Logic Comput., 21:6 (2011), 1035–1063
- D. Rogozin, “Categorical and algebraic aspects of the intuitionistic modal logic $mathrm{IEL}^-$ and its predicate extensions”, J. Logic Comput., 31:1 (2021), 347–374
- A. Tarski, “What is elementary geometry?”, The axiomatic method (Univ. of Calif., Berkeley, 1957/1958), Stud. Logic Found. Math., 27, North-Holland Publishing Co., Amsterdam, 1959, 16–29
- M. Beeson, “A constructive version of Tarski's geometry”, Ann. Pure Appl. Logic, 166:11 (2015), 1199–1273
- В. Е. Плиско, В. Х. Хаханян, Интуиционистская логика, Изд-во при мех.-матем. ф-те МГУ, М., 2009, 159 с.
- Youan Su, K. Sano, “First-order intuitionistic epistemic logic”, Logic, rationality, and interaction, Lecture Notes in Comput. Sci., 11813, Springer, Berlin, 2019, 326–339
Қосымша файлдар
