Acesso aberto Acesso aberto  Acesso é fechado Acesso está concedido  Acesso é fechado Somente assinantes

Volume 211, Nº 7 (2020)

Stability of Poiseuille-type flows in an MHD model of an incompressible polymeric fluid

Blokhin A., Tkachev D.

Resumo

A generalization of the Pokrovskii-Vinogradov model for flows of solutions and melts of incompressible viscoelastic polymeric media to the case of nonisothermic flows in an infinite plane channel under the effect of a magnetic field is considered. A formal asymptotic representation is derived for the eigenvalues of the linearized problem (the basic solution is an analogue of the Poiseuille flow of a viscous fluid in the Navier-Stokes model) as their absolute value increases. A necessary condition for the asymptotic stability of an analogue of the Poiseuille shear flow is deduced.Bibliography: 22 titles.
Matematicheskii Sbornik. 2020;211(7):3-23
pages 3-23 views

On the derived category of $\mathrm{IGr}(3,8)$

Guseva L.

Resumo

We construct a full exceptional collection of vector bundles in the bounded derived category of coherent sheaves on the Grassmannian $\mathrm{IGr}(3,8)$ of isotropic 3-dimensional subspaces in a symplectic vector space of dimension 8.Bibliography: 16 titles.
Matematicheskii Sbornik. 2020;211(7):24-59
pages 24-59 views

First-order zero-one law for the uniform model of the random graph

Zhukovskii M., Sveshnikov N.

Resumo

The paper considers the Erdős-Renyi random graph in the uniform model $G(n,m)$, where $m=m(n)$ is a sequence of nonnegative integers such that $m(n)\sim cn^{\alpha}<(2-\varepsilon)n^2$ for some $c>0$, $\alpha\in[0,2]$, and $\varepsilon>0$. It is shown that $G(n,m)$ obeys the zero-one law for the first-order language if and only if either $\alpha\in\{0,2\}$, or $\alpha$ is irrational, or $\alpha\in(0,1)$ and $\alpha$ is not a number of the form $1-1/\ell$, $\ell\in\mathbb{N}$. Bibliography: 15 titles.
Matematicheskii Sbornik. 2020;211(7):60-71
pages 60-71 views

A new series of moduli components of rank-2 semistable sheaves on $\mathbb{P}^{3}$ with singularities of mixed dimension

Ivanov A.

Resumo

We construct a new infinite series of irreducible components of the Gieseker-Maruyama moduli scheme $\mathscr{M}(k)$, $k \geq 3$, of semistable rank-2 sheaves on $\mathbb{P}^3$ with Chern classes $c_1=0$, $c_2=k$ and $c_3=0$, whose general points are sheaves with singularities of mixed dimension. These sheaves are constructed by elementary transformations of stable and properly $\mu$-semistable reflexive sheaves along disjoint unions of collections of points and smooth irreducible curves which are rational or complete intersection curves in $\mathbb{P}^{3}$. As a special member of this series, we obtain a new component of $\mathscr{M}(3)$. Bibliography: 12 titles.
Matematicheskii Sbornik. 2020;211(7):72-92
pages 72-92 views

An elliptic billiard in a potential force field: classification of motions, topological analysis

Kobtsev I.

Resumo

Given an ellipse ${\frac{x^2}{a}+\frac{y^2}{b}=1}$, $a>b>0$, we consider an absolutely elastic billiard in it with potential $\frac{k}{2}(x^2+y^2)+\frac{\alpha}{2x^2}+\frac{\beta}{2y^2}$, $a\geq0$, $\beta\geq0$. This dynamical system is integrable and has two degrees of freedom. We obtain the iso-energy invariants of rough and fine Liouville equivalence, and conduct a comparative analysis of other systems known in rigid body mechanics. To obtain the results we apply the method of separation of variables and construct a new method, which is equivalent to the bifurcation diagram but does not require it to be constructed. Bibliography: 17 titles.
Matematicheskii Sbornik. 2020;211(7):93-120
pages 93-120 views

Analytic solutions of convolution equations on convex sets in the complex plane with an open obstacle on the boundary

Melikhov S., Khanina L.

Resumo

Conditions, including criteria, are established for the existence of a continuous linear right inverse to a surjective convolution operator in the space of germs of analytic functions on a convex subset of the complex plane which has a countable neighbourhood basis consisting of convex domains. These are stated in terms of the existence of special families of subharmonic functions and the boundary behaviour of convex conformal mappings related to the sets in question. Bibliography: 50 titles.
Matematicheskii Sbornik. 2020;211(7):121-150
pages 121-150 views

Encodings of trajectories and invariant measures

Osipenko G.

Resumo

We consider a discrete dynamical system on a compact manifold $M$ generated by a homeomorphism $f$. Let $C=\{M(i)\}$ be a finite covering of $M$ by closed cells. The symbolic image of a dynamical system is a directed graph $G$ with vertices corresponding to cells in which vertices $i$ and $j$ are joined by an arc $i\to j$ if the image $f(M(i))$ intersects $M(j)$. We show that the set of paths of the symbolic image converges to the set of trajectories of the system in the Tychonoff topology as the diameter of the covering tends to zero. For a cycle on $G$ going through different vertices, a simple flow is by definition a uniform distribution on arcs of this cycle. We show that simple flows converge to ergodic measures in the weak topology as the diameter of the covering tends to zero. Bibliography: 28 titles.
Matematicheskii Sbornik. 2020;211(7):151-176
pages 151-176 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».