Weak semiregular solutions to the Dirichlet problem for quasilinear elliptic equations in divergence form with discontinuous weak nonlinearities

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In a bounded domain of an $N$-dimensional space we study the homogeneous Dirichlet problem for a quasilinear elliptic equation in divergence form with a discontinuous weak nonlinearity of power growth at infinity. Using a variational method based on the concept of quasipotential operator we obtain a theorem on the existence of a weak semiregular solution to the problem under study. The semiregularity of a solution means that, almost everywhere in the domain in which the boundary value problem is considered, its values are continuity points of the weak nonlinearity with respect to the phase variable. Next, a positive parameter is introduced into the equation as a multiplier of the weak nonlinearity, and the question of the existence of nontrivial weak semiregular solutions to the resulting boundary value problem is studied. In this case the existence of a trivial solution for all values of the parameter is assumed. A theorem on the existence of a nontrivial weak semiregular solution for sufficiently large values of the parameter is established.

作者简介

Vyacheslav Pavlenko

Chelyabinsk State University, Chelyabinsk, Russia

编辑信件的主要联系方式.
Email: pavlenko@csu.ru
Doctor of physico-mathematical sciences, Professor

Dmitriy Potapov

Saint-Petersburg State University, St. Petersburg, Russia

Email: d.potapov@spbu.ru
Candidate of physico-mathematical sciences, Associate professor

参考

  1. А. Д. Ляшко, М. М. Карчевский, “О решении некоторых нелинейных задач теории фильтрации”, Изв. вузов. Матем., 1975, № 6, 73–81
  2. Г. Н. Яковлев, “Свойства решений одного класса квазилинейных эллиптических уравнений второго порядка в дивергентной форме”, Исследования по теории дифференцируемых функций многих переменных и ее приложениям. V, Сборник работ под редакцией С. М. Никольского, Тр. МИАН СССР, 131, 1974, 232–242
  3. В. Н. Павленко, Д. К. Потапов, “О существовании луча собственных значений для уравнений с разрывными операторами”, Сиб. матем. журн., 42:4 (2001), 911–919
  4. В. Н. Павленко, Д. К. Потапов, “Вариационный метод для эллиптических систем с разрывными нелинейностями”, Матем. сб., 212:5 (2021), 133–152
  5. В. Н. Павленко, Д. К. Потапов, “Полуправильные решения эллиптических краевых задач с разрывными нелинейностями экспоненциального роста”, Матем. сб., 213:7 (2022), 121–138
  6. В. Н. Павленко, Д. К. Потапов, “Полуправильные решения интегральных уравнений с разрывными нелинейностями”, Матем. заметки, 116:1 (2024), 109–121
  7. Kung-Ching Chang, “Variational methods for non-differentiable functionals and their applications to partial differential equations”, J. Math. Anal. Appl., 80:1 (1981), 102–129
  8. L. Gasinski, N. S. Papageorgiou, Nonsmooth critical point theory and nonlinear boundary value problems, Ser. Math. Anal. Appl., 8, Chapman & Hall/CRC, Boca Raton, FL, 2005, xiv+775 pp.
  9. G. Bonanno, P. Candito, “Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities”, J. Differential Equations, 244:12 (2008), 3031–3059
  10. S. A. Marano, D. Motreanu, “On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems”, Nonlinear Anal., 48:1 (2002), 37–52
  11. А. Н. Колмогоров, С. В. Фомин, Элементы теории функций и функционального анализа, 3-е изд., Наука, М., 1972, 496 с.
  12. И. В. Шрагин, “Условия измеримости суперпозиций”, Докл. АН СССР, 197:2 (1971), 295–298
  13. J. A. Santos, P. F. S. Pontes, S. H. M. Soares, “A global result for a degenerate quasilinear eigenvalue problem with discontinuous nonlinearities”, Calc. Var. Partial Differential Equations, 62:3 (2023), 91, 33 pp.
  14. В. Н. Павленко, Д. К. Потапов, “Об одном классе квазилинейных уравнений эллиптического типа с разрывными нелинейностями”, Изв. РАН. Сер. матем., 86:6 (2022), 143–160
  15. М. М. Вайнберг, Вариационный метод и метод монотонных операторов в теории нелинейных уравнений, Наука, М., 1972, 416 с.
  16. В. Н. Павленко, “Вариационный метод для уравнений с разрывными операторами”, Вестник ЧелГУ, 1994, № 2, 87–95
  17. В. Н. Павленко, “Теоремы существования для эллиптических вариационных неравенств с квазипотенциальными операторами”, Дифференц. уравнения, 24:8 (1988), 1397–1402
  18. В. Н. Павленко, “Существование решений у нелинейных уравнений с разрывными монотонными операторами”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1973, № 6, 21–29
  19. Н. Данфорд, Дж. Т. Шварц, Линейные операторы, т. 2, Спектральная теория. Самосопряженные операторы в гильбертовом пространстве, Мир, М., 1966, 1063 с.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pavlenko V.N., Potapov D.K., 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».