Normalization of rationally integrable systems
- Autores: Zung N.T.1
-
Afiliações:
- Institut de Mathématiques de Toulouse, Toulouse, France
- Edição: Volume 216, Nº 5 (2025)
- Páginas: 106-122
- Seção: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/306707
- DOI: https://doi.org/10.4213/sm10221
- ID: 306707
Citar
Resumo
It is well known that any analytic vector field near a singular point admits a normalization à la Poincare-Birkhoff, but this normalization is only formal in general, and the problem of analytic (convergent) normalization is a difficult one. In [26] and [27] we proposed a new approach to the normalization of vector fields, via their intrinsic associated torus actions: an analytic vector field is analytically normalizable near a singular point if and only if its associated torus action is analytic (and not just formal). We then showed that if a vector field is analytically integrable, then its associated torus action is analytic, and therefore the vector field is analytically normalizable [26], [27]. In this paper we extend this analytic normalization result to the case of rationally integrable systems, where the first integrals and commuting vector fields are not required to be analytic, but just rational (that is, quotients of analytic functions or vector fields by analytic functions). For example, any vector field of the type $X = f Y$, where Y is an analytically diagonalizable vector field and f is an analytic function such that $Y (f ) = 0$, is rationally integrable but not necessarily analytically integrable.
Palavras-chave
Sobre autores
Nguyen Zung
Institut de Mathématiques de Toulouse, Toulouse, France
Autor responsável pela correspondência
Email: ntzung@torus.ai
Bibliografia
- M. Ayoul, Nguyen Tien Zung, “Galoisian obstructions to non-Hamiltonian integrability”, C. R. Math. Acad. Sci. Paris, 348:23-24 (2010), 1323–1326
- D. Bambusi, G. Cicogna, G. Gaeta, G. Marmo, “Normal forms, symmetry and linearization of dynamical systems”, J. Phys. A, 31:22 (1998), 5065–5082
- O. I. Bogoyavlenskij, “A concept of integrability of dynamical systems”, C. R. Math. Rep. Acad. Sci. Canada, 18:4 (1996), 163–168
- А. Д. Брюно, Локальный метод нелинейного анализа дифференциальных уравнений, Наука, М., 1979, 253 с.
- A. D. Bruno, S. Walcher, “Symmetries and convergence of normalizing transformations”, J. Math. Anal. Appl., 183:3 (1994), 571–576
- G. Cicogna, S. Walcher, “Convergence of normal form transformations: the role of symmetries”, Acta Appl. Math., 70:1-3 (2002), 95–111
- A. T. Fomenko, Integrability and nonintegrability in geometry and mechanics, Transl. from the Russian, Math. Appl. (Soviet Ser.), 31, Kluwer Acad. Publ., Dordrecht, 1988, xvi+343 pp.
- А. Т. Фоменко, “Теория Морса интегрируемых гамильтоновых систем”, Докл. АН СССР, 287:5 (1986), 1071–1075
- А. Т. Фоменко, Х. Цишанг, “Топологический инвариант и критерий эквивалентности интегрируемых гамильтоновых систем с двумя степенями свободы”, Изв. АН СССР. Сер. матем., 54:3 (1990), 546–575
- H. Ito, “Convergence of Birkhoff normal forms for integrable systems”, Comment. Math. Helv., 64:3 (1989), 412–461
- H. Ito, “Integrability of Hamiltonian systems and Birkhoff normal forms in the simple resonance case”, Math. Ann., 292:3 (1992), 411–444
- Kai Jiang, T. S. Ratiu, Nguyen Tien Zung, “Simultaneous local normal forms of dynamical systems with singular underlying geometric structures”, Nonlinearity, 37:10 (2024), 105013, 38 pp.
- T. Kappeler, Y. Kodama, A. Nemethi, “On the Birkhoff normal form of a completely integrable Hamiltonian system near a fixed point with resonance”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 26:4 (1998), 623–661
- S. Łojasiewicz, “Sur le problème de la division”, Studia Math., 18 (1959), 87–136
- J. J. Morales-Ruiz, J.-P. Ramis, C. Simo, “Integrability of Hamiltonian systems and differential Galois groups of higher variational equations”, Ann. Sci. Ec. Norm. Super. (4), 40:6 (2007), 845–884
- R. Roussarie, Modèles locaux de champs et de formes, Asterisque, 30, Soc. Math. France, Paris, 1975, 181 pp.
- H. Rüssmann, “Über das Verhalten analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung”, Math. Ann., 154 (1964), 285–300
- Л. Зигель, Ю. Мозер, Лекции по небесной механике, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2001, 384 с.
- L. Stolovitch, “Normalisation holomorphe d'algèbres de type Cartan de champs de vecteurs holomorphes singuliers”, C. R. Acad. Sci. Paris Ser. I Math., 330:2 (2000), 121–124
- L. Stolovitch, “Singular complete integrability”, Inst. Hautes Etudes Sci. Publ. Math., 91 (2000), 133–210
- J. Vey, “Algebres commutatives de champs de vecteurs isochores”, Bull. Soc. Math. France, 107:4 (1979), 423–432
- J. Vey, “Sur certains systemes dynamiques separables”, Amer. J. Math., 100:3 (1978), 591–614
- S. Walcher, “On the Poincare problem”, J. Differential Equations, 166:1 (2000), 51–78
- Xiang Zhang, Integrability of dynamical systems: algebra and analysis, Dev. Math., 47, Springer, Singapore, 2017, xv+380 pp.
- Nguyen Tien Zung, “A conceptual approach to the problem of action-angle variables”, Arch. Ration. Mech. Anal., 229:2 (2018), 789–833
- Nguyen Tien Zung, “Convergence versus integrability in Birkhoff normal form”, Ann. of Math. (2), 161:1 (2005), 141–156
- Nguyen Tien Zung, “Convergence versus integrability in Poincare–Dulac normal form”, Math. Res. Lett., 9:2-3 (2002), 217–228
- Nguyen Tien Zung, “Geometry of integrable non-Hamiltonian systems”, Geometry and dynamics of integrable systems, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Cham, 2016, 85–140
- Nguyen Tien Zung, Normalization of rationally integrable systems
- Нгуен Тьен Зунг, “О свойстве общего положения простых боттовских интегралов”, УМН, 45:4(274) (1990), 161–162
- Нгуен Тьен Зунг, Нгуен Тхань Тхьен, “Редукция и интегрируемость стохастических динамических систем”, Фундамент. и прикл. матем., 20:3 (2015), 213–249
Arquivos suplementares
