Local structure of convex surfaces
- 作者: Plakhov A.Y.1,2
-
隶属关系:
- Department of Mathematics, University of Aveiro
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
- 期: 卷 215, 编号 3 (2024)
- 页面: 119-158
- 栏目: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/254276
- DOI: https://doi.org/10.4213/sm9921
- ID: 254276
如何引用文章
详细
A point on the surface of a convex body and a supporting plane to the body at this point are under consideration. A plane parallel to this supporting plane and cutting off part of the surface is drawn. The limiting behaviour of the cut-off part of the surface as the cutting plane approaches the point in question is investigated. More precisely, the limiting behavior of the appropriately normalized surface area measure in S2 generated by this part of the surface is studied. The cases when the point is regular and singular (a conical or a ridge point) are considered. The supporting plane can be positioned in different ways with respect to the tangent cone at the point: its intersection with the cone can be a vertex, a line (if a ridge point is considered), a plane angle (which can degenerate into a ray or a half-plane), or a plane (if the point is regular and, correspondingly, the cone degenerates into a half-space). In the case when the intersection is a ray, the plane can be tangent (in a one- or two-sided manner) or not tangent to the cone.
It turns out that the limiting behaviour of the measure can be different. In the case when the intersection of the supporting plane and the cone is a vertex or in the case of a (one- or two-sided) tangency, the weak limit always exists and is uniquely determined by the plane and the cone. In the case when the intersection is a line or a ray with no tangency, there may be no limit at all. In this case all possible weak partial limits are characterized
作者简介
Alexander Plakhov
Department of Mathematics, University of Aveiro; Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
编辑信件的主要联系方式.
Email: plakhovalexander0@gmail.com
Doctor of physico-mathematical sciences, Head Scientist Researcher
参考
- А. Д. Александров, “К теории смешанных объемов выпуклых тел. III. Распространение двух теорем Минковского о выпуклых многогранниках на произвольные выпуклые тела”, Матем. сб., 3(45):1 (1938), 27–46
- В. А. Александров, Н. В. Коптева, С. С. Кутателадзе, “Сумма Бляшке и выпуклые многогранники”, Труды семинара по векторному и тензорному анализу, 26, Изд-во МГУ, М., 2005, 8–30
- И. Ньютон, Собрание трудов академика А. Н. Крылова, т. VII, Математические начала натуральной философии, Изд-во АН СССР, М.–Л., 1936, 659 с.
- G. Buttazzo, B. Kawohl, “On Newton's problem of minimal resistance”, Math. Intelligencer, 15:4 (1993), 7–12
- F. Brock, V. Ferone, B. Kawohl, “A symmetry problem in the calculus of variations”, Calc. Var. Partial Differential Equations, 4:6 (1996), 593–599
- G. Buttazzo, V. Ferone, B. Kawohl, “Minimum problems over sets of concave functions and related questions”, Math. Nachr., 173 (1995), 71–89
- G. Wachsmuth, “The numerical solution of Newton's problem of least resistance”, Math. Program., 147:1-2(A) (2014), 331–350
- A. Plakhov, “A note on Newton's problem of minimal resistance for convex bodies”, Calc. Var. Partial Differential Equations, 59:5 (2020), 167, 13 pp.
- A. Plakhov, “A solution to Newton's least resistance problem is uniquely defined by its singular set”, Calc. Var. Partial Differential Equations, 61:5 (2022), 189, 37 pp.
- A. Plakhov, “On generalized Newton's aerodynamic problem”, Тр. ММО, 82, no. 1, МЦНМО, М., 2021, 217–226
- А. В. Погорелов, Внешняя геометрия выпуклых поверхностей, Наука, М., 1969, 759 с.
- A. Plakhov, “Local structure of convex surfaces near regular and conical points”, Axioms, 11:8 (2022), 356, 10 pp.
- R. Schneider, Convex bodies: the Brunn–Minkowski theory, Encyclopedia Math. Appl., 44, Cambridge Univ. Press, Cambridge, 1993, xiv+490 pp.
补充文件
