Local structure of convex surfaces

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A point on the surface of a convex body and a supporting plane to the body at this point are under consideration. A plane parallel to this supporting plane and cutting off part of the surface is drawn. The limiting behaviour of the cut-off part of the surface as the cutting plane approaches the point in question is investigated. More precisely, the limiting behavior of the appropriately normalized surface area measure in S2 generated by this part of the surface is studied. The cases when the point is regular and singular (a conical or a ridge point) are considered. The supporting plane can be positioned in different ways with respect to the tangent cone at the point: its intersection with the cone can be a vertex, a line (if a ridge point is considered), a plane angle (which can degenerate into a ray or a half-plane), or a plane (if the point is regular and, correspondingly, the cone degenerates into a half-space). In the case when the intersection is a ray, the plane can be tangent (in a one- or two-sided manner) or not tangent to the cone.
It turns out that the limiting behaviour of the measure can be different. In the case when the intersection of the supporting plane and the cone is a vertex or in the case of a (one- or two-sided) tangency, the weak limit always exists and is uniquely determined by the plane and the cone. In the case when the intersection is a line or a ray with no tangency, there may be no limit at all. In this case all possible weak partial limits are characterized

作者简介

Alexander Plakhov

Department of Mathematics, University of Aveiro; Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)

编辑信件的主要联系方式.
Email: plakhovalexander0@gmail.com
Doctor of physico-mathematical sciences, Head Scientist Researcher

参考

  1. А. Д. Александров, “К теории смешанных объемов выпуклых тел. III. Распространение двух теорем Минковского о выпуклых многогранниках на произвольные выпуклые тела”, Матем. сб., 3(45):1 (1938), 27–46
  2. В. А. Александров, Н. В. Коптева, С. С. Кутателадзе, “Сумма Бляшке и выпуклые многогранники”, Труды семинара по векторному и тензорному анализу, 26, Изд-во МГУ, М., 2005, 8–30
  3. И. Ньютон, Собрание трудов академика А. Н. Крылова, т. VII, Математические начала натуральной философии, Изд-во АН СССР, М.–Л., 1936, 659 с.
  4. G. Buttazzo, B. Kawohl, “On Newton's problem of minimal resistance”, Math. Intelligencer, 15:4 (1993), 7–12
  5. F. Brock, V. Ferone, B. Kawohl, “A symmetry problem in the calculus of variations”, Calc. Var. Partial Differential Equations, 4:6 (1996), 593–599
  6. G. Buttazzo, V. Ferone, B. Kawohl, “Minimum problems over sets of concave functions and related questions”, Math. Nachr., 173 (1995), 71–89
  7. G. Wachsmuth, “The numerical solution of Newton's problem of least resistance”, Math. Program., 147:1-2(A) (2014), 331–350
  8. A. Plakhov, “A note on Newton's problem of minimal resistance for convex bodies”, Calc. Var. Partial Differential Equations, 59:5 (2020), 167, 13 pp.
  9. A. Plakhov, “A solution to Newton's least resistance problem is uniquely defined by its singular set”, Calc. Var. Partial Differential Equations, 61:5 (2022), 189, 37 pp.
  10. A. Plakhov, “On generalized Newton's aerodynamic problem”, Тр. ММО, 82, no. 1, МЦНМО, М., 2021, 217–226
  11. А. В. Погорелов, Внешняя геометрия выпуклых поверхностей, Наука, М., 1969, 759 с.
  12. A. Plakhov, “Local structure of convex surfaces near regular and conical points”, Axioms, 11:8 (2022), 356, 10 pp.
  13. R. Schneider, Convex bodies: the Brunn–Minkowski theory, Encyclopedia Math. Appl., 44, Cambridge Univ. Press, Cambridge, 1993, xiv+490 pp.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Плахов А.Y., 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».