Existence of solutions and their properties in a nonlinear eigenvalue problem
- 作者: Valovik D.V.1, Tikhov S.V.1
-
隶属关系:
- Penza State University
- 期: 卷 215, 编号 1 (2024)
- 页面: 59-81
- 栏目: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/251790
- DOI: https://doi.org/10.4213/sm9892
- ID: 251790
如何引用文章
详细
An eigenvalue problem is considered for a nonlinear nonautonomous ordinary differential equation of the second order on a closed interval with conditions of the first type and an additional (local) condition. The nonlinearity in the equation is due to a monotonically increasing nonnegative function with powerlike growth at infinity. The existence of infinite numbers of negative and positive eigenvalues is shown. Asymptotic formulae for the eigenvalues and the maxima of eigenfunctions are found, and comparison theorems are established.
作者简介
Dmitry Valovik
Penza State University
Email: dvalovik@mail.ru
ORCID iD: 0000-0001-5406-4788
SPIN 代码: 3995-1152
Scopus 作者 ID: 24726073300
Researcher ID: F-8088-2013
Candidate of physico-mathematical sciences, no status
Stanislav Tikhov
Penza State University
编辑信件的主要联系方式.
Email: dvalovik@mail.ru
without scientific degree
参考
- Д. В. Валовик, “О нелинейной задаче на собственные значения, связанной с теорией распространения электромагнитных волн”, Дифференц. уравнения, 54:2 (2018), 168–179
- V. Kurseeva, M. Moskaleva, D. Valovik, “Asymptotical analysis of a nonlinear Sturm–Liouville problem: linearisable and non-linearisable solutions”, Asymptot. Anal., 119:1-2 (2020), 39–59
- S. V. Tikhov, D. V. Valovik, “Nonlinearizable solutions in an eigenvalue problem for Maxwell's equations with nonhomogeneous nonlinear permittivity in a layer”, Stud. Appl. Math., 149:3 (2022), 565–587
- Л. Д. Ландау, Е. М. Лифшиц, Электродинамика сплошных сред, Теоретическая физика, 8, 2-е изд., Наука, М., 1982, 624 с.
- Н. Н. Ахмедиев, А. Анкевич, Солитоны, Физматлит, М., 2003, 304 с.
- T. Cazenave, Semilinear Schrödinger equations, Courant Lect. Notes Math., 10, New York Univ., Courant Inst. Math. Sci., New York; Amer. Math. Soc., Providence, RI, 2003, xiv+323 pp.
- G. Fibich, The nonlinear Schrödinger equation. Singular solutions and optical collapse, Appl. Math. Sci., 192, Springer, Cham, 2015, xxxii+862 pp.
- П. Е. Жидков, “О базисности Рисса системы собственных функций нелинейной задачи типа Штурма–Лиувилля”, Матем. сб., 191:3 (2000), 43–52
- Б. М. Левитан, И. С. Саргсян, Операторы Штурма–Лиувилля и Дирака, Наука, М., 1988, 432 с.
- В. А. Марченко, Спектральная теория операторов Штурма–Лиувилля, Наукова думка, Киев, 1972, 219 с.
- Дж. Сансоне, Обыкновенные дифференциальные уравнения, т. 1, ИЛ, М., 1953, 346 с.
- Р. Курант, Д. Гильберт, Методы математической физики, т. 1, 3-е изд., Гостехиздат, М.–Л., 1951, 476 с.
- И. Г. Петровский, Лекции по теории обыкновенных дифференциальных уравнений, 7-е изд., Изд-во Моск. ун-та, М., 1984, 296 с.
- Ф. Трикоми, Дифференциальные уравнения, ИЛ, М., 1962, 352 с.
- Yu. G. Smirnov, D. V. Valovik, “Reply to “Comment on ‘Guided electromagnetic waves propagating in a plane dielectric waveguide with nonlinear permittivity’ ””, Phys. Rev. A (3), 92:5 (2015), 057804, 2 pp.
- М. А. Наймарк, Линейные дифференциальные операторы, 2-е изд., Наука, М., 1969, 526 с.
- Л. С. Понтрягин, Обыкновенные дифференциальные уравнения, Физматгиз, М., 1961, 311 с.
- Д. В. Валовик, “Об интегральной характеристической функции задачи Штурма–Лиувилля”, Матем. сб., 211:11 (2020), 41–53
- Д. В. Валовик, Г. В. Чалышов, “Интегральная характеристическая функция нелинейной задачи Штурма–Лиувилля”, Дифференц. уравнения, 57:12 (2021), 1589–1598
- H. W. Schürmann, Y. Smirnov, Y. Shestopalov, “Propagation of TE waves in cylindrical nonlinear dielectric waveguides”, Phys. Rev. E (3), 71:1 (2005), 016614, 10 pp.
补充文件
