On a conjecture of Teissier: the case of log canonical thresholds
- Authors: Elduque E.1, Mustaţă M.1
-
Affiliations:
- University of Michigan, Department of Mathematics
- Issue: Vol 212, No 3 (2021)
- Pages: 175-192
- Section: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/142370
- DOI: https://doi.org/10.4213/sm9442
- ID: 142370
Cite item
Abstract
About the authors
Eva Elduque
University of Michigan, Department of Mathematics
Mircea Mustaţă
University of Michigan, Department of Mathematics
References
- N. Budur, “On Hodge spectrum and multiplier ideals”, Math. Ann., 327:2 (2003), 257–270
- J.-P. Demailly, J. Kollar, “Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds”, Ann. Sci. Ecole Norm. Sup. (4), 34:4 (2001), 525–556
- B. Dirks, M. Mustaţă, Minimal exponents of hyperplane sections: a conjecture of Teissier
- G.-M. Greuel, C. Lossen, E. Shustin, Introduction to singularities and deformations, Springer Monogr. Math., Springer, Berlin, 2007, xii+471 pp.
- Р. Хартсхорн, Алгебраическая геометрия, Мир, М., 1981, 600 с.
- Shin-Yao Jow, E. Miller, “Multiplier ideals of sums via cellular resolutions”, Math. Res. Lett., 15:2 (2008), 359–373
- J. Kollar, “Singularities of pairs”, Algebraic geometry (Santa Cruz, 1995), Proc. Sympos. Pure Math., 62, Part 1, Amer. Math. Soc., Providence, RI, 1997, 221–287
- J. Kollar, S. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens and A. Corti, transl. from the 1998 Japan. original, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp.
- R. Lazarsfeld, Positivity in algebraic geometry, v. II, Ergeb. Math. Grenzgeb. (3), 49, Springer-Verlag, Berlin, 2004, xviii+385 pp.
- F. Loeser, “Exposant d'Arnold et sections planes”, C. R. Acad. Sci. Paris Ser. I Math., 298:19 (1984), 485–488
- B. Malgrange, “Integrales asymptotiques et monodromie”, Ann. Sci. Ecole Norm. Sup. (4), 7:3 (1974), 405–430
- H. Matsumura, Commutative ring theory, Transl. from the Japan., Cambridge Stud. Adv. Math., 8, 2nd ed., Cambridge Univ. Press, Cambridge, 1989, xiv+320 pp.
- M. Mustaţă, “Singularities of pairs via jet schemes”, J. Amer. Math. Soc., 15:3 (2002), 599–615
- M. Mustaţă, “IMPANGA lecture notes on log canonical thresholds”, Contributions to algebraic geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, 407–442
- M. Mustaţă, M. Popa, “Hodge ideals for ${mathbb Q}$-divisors, $V$-filtration, and minimal exponent”, Forum Math. Sigma, 2018, e19, 41 pp.
- J. H. M. Steenbrink, “Semicontinuity of the singularity spectrum”, Invent. Math., 79:3 (1985), 557–565
- S. Takagi, “Formulas for multiplier ideals on singular varieties”, Amer. J. Math., 128:6 (2006), 1345–1362
- B. Teissier, “Varietes polaires. I. Invariants polaires des singularites d'hypersurfaces”, Invent. Math., 40:3 (1977), 267–292
- B. Teissier, “Polyèdre de Newton jacobien et equisingularite”, Seminaire sur les singularites (Paris, 1976/1977), Publ. Math. Univ. Paris VII, 7, Univ. Paris VII, Paris, 1980, 193–221
- А. Н. Варченко, “Комплексный показатель особости не меняется вдоль страта $mu = mathrm{const}$”, Функц. анализ и его прил., 16:1 (1982), 1–12
- О. Зарисский, П. Самюэль, Коммутативная алгебра, т. 2, ИЛ, М., 1963, 438 с.
Supplementary files
