Towards finite generation of higher rational rank valuations
- Authors: Xu C.1,2,3
-
Affiliations:
- Princeton University, Department of Mathematics
- Department of Mathematics, Massachusetts Institute of Technology
- Peking University
- Issue: Vol 212, No 3 (2021)
- Pages: 157-174
- Section: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/142369
- DOI: https://doi.org/10.4213/sm9448
- ID: 142369
Cite item
Abstract
Keywords
About the authors
Chenyang Xu
Princeton University, Department of Mathematics; Department of Mathematics, Massachusetts Institute of Technology; Peking University
References
- $K$-stability and related topics problems. 3. Special degeneration, AIM Problem Lists, 2020
- H. Ahmadinezhad, Ziquan Zhuang, $K$-stability of Fano varieties via admissible flags
- C. Birkar, P. Cascini, C. D. Hacon, J. McKernan, “Existence of minimal models for varieties of log general type”, J. Amer. Math. Soc., 23:2 (2010), 405–468
- H. Blum, Yuchen Liu, Chenyang Xu, Openness of K-semistability for Fano varieties
- H. Blum, Yuchen Liu, Chuyu Zhou, Optimal destabilization of K-unstable Fano varieties via stability thresholds
- H. Blum, Chenyang Xu, “Uniqueness of K-polystable degenerations of Fano varieties”, Ann. of Math. (2), 190:2 (2019), 609–656
- S. D. Cutkosky, “On finite and nonfinite generation of associated graded rings of Abhyankar valuations”, Singularities, algebraic geometry, commutative algebra, and related topics, Springer, Cham, 2018, 481–490
- T. de Fernex, J. Kollar, Chenyang Xu, “The dual complex of singularities”, Higher dimensional algebraic geometry – in honour of Professor Yujiro Kawamata's sixtieth birthday, Adv. Stud. Pure Math., 74, Math. Soc. Japan, Tokyo, 2017, 103–129
- J. Kollar, S. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens and A. Corti, transl. from the 1998 Japan. original, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp.
- J. Kollar, Singularities of the minimal model program, With the collaboration of S. Kovacs, Cambridge Tracts in Math., 200, Cambridge Univ. Press, Cambridge, 2013, x+370 pp.
- J. Kollar, Families of varieties of general type, Book on moduli of surfaces – ongoing project, 2018
- R. Lazarsfeld, Positivity in algebraic geometry, v. II, Ergeb. Math. Grenzgeb. (3), 49, Springer-Verlag, Berlin, 2004, xviii+385 pp.
- Chi Li, “Minimizing normalized volumes of valuations”, Math. Z., 289:1-2 (2018), 491–513
- Chi Li, Chenyang Xu, “Stability of valuations: higher rational rank”, Peking Math. J., 1:1 (2018), 1–79
- Chi Li, Chenyang Xu, “Stability of valuations and Kollar components”, J. Eur. Math. Soc. (JEMS), 22:8 (2020), 2573–2627
- B. Teissier, “Overweight deformations of affine toric varieties and local uniformization”, Valuation theory in interaction, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2014, 474–565
- Chenyang Xu, “A minimizing valuation is quasi-monomial”, Ann. of Math. (2), 191:3 (2020), 1003–1030
Supplementary files
