Hermitian-Yang-Mills approach to the conjecture of Griffiths on the positivity of ample vector bundles
- Authors: Demailly J.1
-
Affiliations:
- Institut Fourier, UFR de Mathématiques
- Issue: Vol 212, No 3 (2021)
- Pages: 39-53
- Section: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/142351
- DOI: https://doi.org/10.4213/sm9387
- ID: 142351
Cite item
Abstract
About the authors
Jean-Pierre Demailly
Institut Fourier, UFR de Mathématiques
Email: jean-pierre.demailly@univ-grenoble-alpes.fr
PhD
References
- B. Berndtsson, “Curvature of vector bundles associated to holomorphic fibrations”, Ann. of Math. (2), 169:2 (2009), 531–560
- F. Campana, H. Flenner, “A characterization of ample vector bundles on a curve”, Math. Ann., 287:4 (1990), 571–575
- J.-P. Demailly, H. Skoda, “Relations entre les notions de positivites de P. A. Griffiths et de S. Nakano pour les fibres vectoriels”, Seminaire Pierre Lelong–Henri Skoda (Analyse). Annees 1978/79, Lecture Notes in Math., 822, Springer, Berlin, 1980, 304–309
- S. K. Donaldson, “Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles”, Proc. London Math. Soc. (3), 50:1 (1985), 1–26
- P. A. Griffiths, “Hermitian differential geometry, Chern classes and positive vector bundles”, Global analysis, Papers in honor of K. Kodaira, Univ. Tokyo Press, Tokyo, 1969, 181–251
- K. Kodaira, “On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties)”, Ann. of Math. (2), 60 (1954), 28–48
- C. Mourougane, S. Takayama, “Hodge metrics and positivity of direct images”, J. Reine Angew. Math., 2007:606 (2007), 167–178
- S. Nakano, “On complex analytic vector bundles”, J. Math. Soc. Japan, 7 (1955), 1–12
- M. S. Narasimhan, C. S. Seshadri, “Stable and unitary vector bundles on a compact Riemann surface”, Ann. of Math. (2), 82:3 (1965), 540–567
- P. Naumann, An approach to Griffiths conjecture
- V. P. Pingali, “A vector bundle version of the Monge–Ampère equation”, Adv. Math., 360 (2020), 106921, 40 pp.
- V. P. Pingali, “A note on Demailly's approach towards a conjecture of Griffiths”, C. R. Math. Acad. Sci. Paris, 2021 (to appear)
- K. Uhlenbeck, S. T. Yau, “On the existence of Hermitian–Yang–Mills connections in stable vector bundles”, Comm. Pure Appl. Math., 39:S, suppl. (1986), 257–293
- H. Umemura, “Some results in the theory of vector bundles”, Nagoya Math. J., 52 (1973), 97–128
- Shing-Tung Yau, “On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I”, Comm. Pure Appl. Math., 31:3 (1978), 339–411
Supplementary files
