Homologies of transitive digraphs and discrete spaces
- Autores: Muranov Y.V.1, Jimenez R.B.2
-
Afiliações:
- University of Warmia and Mazury in Olsztyn
- National Autonomous University of Mexico, Institute of Mathematics
- Edição: Volume 214, Nº 8 (2023)
- Páginas: 74-93
- Seção: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/133544
- DOI: https://doi.org/10.4213/sm9842
- ID: 133544
Citar
Resumo
Sobre autores
Yury Muranov
University of Warmia and Mazury in Olsztyn
Email: ymuranov@mail.ru
Doctor of physico-mathematical sciences, Professor
Rolando Jimenez
National Autonomous University of Mexico, Institute of MathematicsCandidate of physico-mathematical sciences
Bibliografia
- A. Connes, “Non-commutative differential geometry”, Inst. Hautes Etudes Sci. Publ. Math., 62 (1985), 41–144
- A. Dimakis, F. Müller-Hoissen, “Discrete differential calculus: graphs, topologies, and gauge theory”, J. Math. Phys., 35:12 (1994), 6703–6735
- A. Dimakis, F. Müller-Hoissen, F. Vanderseypen, “Discrete differential manifolds and dynamics on networks”, J. Math. Phys., 36:7 (1995), 3771–3791
- A. Grigor'yan, Yong Lin, Yu. Muranov, Shing-Tung Yau, “Cohomology of digraphs and (undirected) graphs”, Asian J. Math., 19:5 (2015), 887–932
- G. Hochschild, “On the cohomology groups of an associative algebra”, Ann. of Math. (2), 46:1 (1945), 58–67
- M. Gerstenhaber, S. D. Schack, “Simplicial cohomology is Hochschild cohomology”, J. Pure Appl. Algebra, 30:2 (1983), 143–156
- A. Grigor'yan, Yu. Muranov, Shing-Tung Yau, “On a cohomology of digraphs and Hochschild cohomology”, J. Homotopy Relat. Struct., 11:2 (2016), 209–230
- A. Grigor'yan, Y. V. Muranov, Shing-Tung Yau, “Graphs associated with simplicial complexes”, Homology Homotopy Appl., 16:1 (2014), 295–311
- А. А. Григорьян, Йонг Лин, Ю. В. Муранов, Шинтан Яу, “Комплексы путей и их гомологии”, Фундамент. и прикл. матем., 21:5 (2016), 79–128
- A. Grigor'yan, Yong Lin, Yu. Muranov, Shing-Tung Yau, “Homotopy theory for digraphs”, Pure Appl. Math. Q., 10:4 (2014), 619–674
- A.A. Grigor'yan, R. Jimenez, Y. Muranov, Shing-Tung Yau, “On the path homology theory of digraphs and Eilenberg–Steenrod axioms”, Homology Homotopy Appl., 20:2 (2018), 179–205
- А. А. Григорьян, Ю. В. Муранов, Р. Хименес, “Гомологии орграфов”, Матем. заметки, 109:5 (2021), 705–722
- Ю. В. Муранов, “Гомологии Александрова и гомологии путей”, Матем. заметки, 112:1 (2022), 148–152
- P. Alexandroff, “Discrete Räume”, Матем. сб., 2(44):3 (1937), 501–519
- П. С. Александров, “О понятии пространства в топологии”, УМН, 2:1(17) (1947), 5–57
- J. W. Evans, F. Harary, M. S. Lynn, “On the computer enumeration of finite topologies”, Comm. ACM, 10:5 (1967), 295–297
- C. Marijuan, “Finite topologies and digraphs”, Proyecciones, 29:3 (2010), 291–307
- M. C. McCord, “Singular homology groups and homotopy groups of finite topological spaces”, Duke Math. J., 33:3 (1966), 465–474
- R. E. Stong, “Finite topological spaces”, Trans. Amer. Math. Soc., 123 (1966), 325–340
- M. L. Wachs, “Poset topology: tools and applications”, Geometric combinatorics, IAS/Park City Math. Ser., 13, Amer. Math. Soc., Providence, RI, 2007, 497–615
- J. A. Barmak, Algebraic topology on finite topological spaces and applications, Lecture Notes in Math., 2032, Springer, Berlin, 2011, xviii+170 pp.
- P. J Hilton, S. Wylie, Homology theory. An introduction to algebraic topology, Cambridge Univ. Press, New York, 1960, xv+484 pp.
- А. Хатчер, Алгебраическая топология, МЦНМО, М., 2011, 688 с.
- В. В. Прасолов, Элементы теории гомологий, МЦНМО, М., 2006, 448 с.
Arquivos suplementares
