Symmetric matrices and maximal Nijenhuis pencils
- Authors: Konyaev A.Y.1,2
-
Affiliations:
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
- Moscow Center for Fundamental and Applied Mathematics
- Issue: Vol 214, No 8 (2023)
- Pages: 53-62
- Section: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/133541
- DOI: https://doi.org/10.4213/sm9862
- ID: 133541
Cite item
Abstract
A Nijenhuis pencil is a linear subspace of the space of
About the authors
Andrei Yur'evich Konyaev
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematics
Author for correspondence.
Email: maodzund@bk.ru
References
- A. V. Bolsinov, A. Yu. Konyaev, V. S. Matveev, “Nijenhuis geometry”, Adv. Math., 394 (2022), 108001, 52 pp.
- A. Yu. Konyaev, “Nijenhuis geometry II: Left-symmetric algebras and linearization problem for Nijenhuis operators”, Differential Geom. Appl., 74 (2021), 101706, 32 pp.
- T. Takeuchi, “On the construction of recursion operators for the Kerr–Newman and FRLW metrics”, J. Geom. Symmetry Phys., 37 (2015), 85–96
- A. V. Bolsinov, A. Yu. Konyaev, V. S. Matveev, “Applications of Nijenhuis geometry II: maximal pencils of multi-Hamiltonian structures of hydrodynamic type”, Nonlinearity, 34:8 (2021), 5136–5162
- Ф. Магри, “Цепи Ленарда для классических интегрируемых систем”, ТМФ, 137:3 (2003), 424–432
- О. И. Мохов, “Пучки согласованных метрик и интегрируемые системы”, УМН, 72:5(437) (2017), 113–164
Supplementary files
