Topological analysis of the pseudo-Euclidean Euler top for special values of parameters

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An analogue of the Euler top is considered for a pseudo-Euclidean space is under consideration. In the cases when the geometric integral or area integral vanishes the bifurcation diagrams of the moment map are constructed and the homeomorphism class of each leaf of the Liouville foliation is determined. For each arc of the bifurcation diagram, for one of the two possible cases of the mutual arrangement of the moments of inertia, the types of singularities in the preimage of a small neighbourhood of this arc (analogues of Fomenko 3-atoms) are determined, and for nonsingular isoenergy and isointegral surfaces an invariant of rough Liouville equivalence (an analogue of a rough molecule) is constructed. The pseudo-Euclidean Euler system turns out to have noncompact noncritical bifurcations.

作者简介

Murat Altuev

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

编辑信件的主要联系方式.
Email: murat.altuev@axxonsoft.com

Vladislav Kibkalo

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Email: slava.kibkalo@gmail.com

参考

  1. S. Smale, “Topology and mechanics. 1”, Invent. Math., 10:4 (1970), 305–331
  2. А. В. Болсинов, А. Т. Фоменко, Интегрируемые гамильтоновы системы. Геометрия, топология, классификация, т. 1, 2, Изд. дом “Удмуртский университет”, Ижевск, 1999, 444 с., 447 с.
  3. А. Т. Фоменко, “Теория Морса интегрируемых гамильтоновых систем”, Докл. АН СССР, 287:5 (1986), 1071–1075
  4. А. Т. Фоменко, “Топология поверхностей постоянной энергии некоторых интегрируемых гамильтоновых систем и препятствия к интегрируемости”, Изв. АН СССР. Сер. матем., 50:6 (1986), 1276–1307
  5. А. Т. Фоменко, Х. Цишанг, “Топологический инвариант и критерий эквивалентности интегрируемых гамильтоновых систем с двумя степенями свободы”, Изв. АН СССР. Сер. матем., 54:3 (1990), 546–575
  6. А. В. Болсинов, С. В. Матвеев, А. Т. Фоменко, “Топологическая классификация интегрируемых гамильтоновых систем с двумя степенями свободы. Список систем малой сложности”, УМН, 45:2(272) (1990), 49–77
  7. С. В. Матвеев, А. Т. Фоменко, Алгоритмические и компьютерные методы в трехмерной топологии, Изд-во Моск. ун-та, М., 1991, 303 с.
  8. S. S. Nikolaenko, “Topological classification of the Goryachev integrable systems in the rigid body dynamics: non-compact case”, Lobachevskii J. Math., 38:6 (2017), 1050–1060
  9. С. С. Николаенко, “Топологическая классификация гамильтоновых систем на двумерных некомпактных многообразиях”, Матем. сб., 211:8 (2020), 68–101
  10. В. В. Ведюшкина (Фокичева), А. Т. Фоменко, “Интегрируемые топологические биллиарды и эквивалентные динамические системы”, Изв. РАН. Сер. матем., 81:4 (2017), 20–67
  11. Е. А. Кудрявцева, Т. А. Лепский, “Топология слоений и теорема Лиувилля для интегрируемых систем с неполными потоками”, Тр. сем. по векторному и тензорному анализу, № 27, 2011, 106–149
  12. Д. В. Новиков, “Топологические особенности интегрируемого случая Соколова на алгебре Ли $mathrm{e}(3)$”, Матем. сб., 202:5 (2011), 127–160
  13. Д. В. Новиков, “Топологические особенности интегрируемого случая Соколова на алгебре Ли $mathrm{so}(3,1)$”, Матем. сб., 205:8 (2014), 41–66
  14. Е. А. Кудрявцева, “Аналог теоремы Лиувилля для интегрируемых гамильтоновых систем с неполными потоками”, Докл. РАН, 445:4 (2012), 383–385
  15. К. Р. Алeшкин, “Топология интегрируемых систем с неполными полями”, Матем. сб., 205:9 (2014), 49–64
  16. Д. А. Федосеев, А. Т. Фоменко, “Некомпактные особенности интегрируемых динамических систем”, Фундамент. и прикл. матем., 21:6 (2016), 217–243
  17. Е. А. Кудрявцева, Д. А. Федосеев, “Механические системы с замкнутыми орбитами на многообразиях вращения”, Матем. сб., 206:5 (2015), 107–126
  18. О. А. Загрядский, Е. А. Кудрявцева, Д. А. Федосеев, “Обобщение теоремы Бертрана на поверхности вращения”, Матем. сб., 203:8 (2012), 39–78
  19. С. С. Николаенко, “Топологическая классификация некомпактных 3-атомов с действием окружности”, Чебышевский сб., 22:5 (2021), 185–197
  20. В. А. Кибкало, “Свойство некомпактности слоев и особенностей неевклидовой системы Ковалевской на пучке алгебр Ли”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 6 (2020), 56–59
  21. С. В. Соколов, “Интегрируемый случай Ковалевской в неевклидовом пространстве: разделение переменных”, Труды МАИ, 100 (2018), 4, 13 с.
  22. A. V. Borisov, I. S. Mamaev, “Rigid body dynamics in non-Euclidean spaces”, Russ. J. Math. Phys., 23:4 (2016), 431–454
  23. Классическая динамика в неевклидовых пространствах, ред. А. В. Борисов, И. С. Мамаев, Ин-т компьютерных исследований, М.–Ижевск, 2004, 348 с.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Altuev M.K., Kibkalo V.A., 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».