Cousin complex on the complement to the strict normal-crossing divisor in a local essentially smooth scheme over a field
- Authors: Druzhinin A.E.1
-
Affiliations:
- St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
- Issue: Vol 214, No 2 (2023)
- Pages: 72-89
- Section: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/133506
- DOI: https://doi.org/10.4213/sm9762
- ID: 133506
Cite item
Abstract
Keywords
About the authors
Andrei Eduardovich Druzhinin
St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Email: andrei.druzh@gmail.com
Candidate of physico-mathematical sciences
References
- S. M. Gersten, “Some exact sequences in the higher K-theory of rings”, Algebraic K-theory (Battelle Memorial Inst., Seattle, Wash., 1972), v. I, Lecture Notes in Math., 341, Higher K-theories, Springer, Berlin, 1973, 211–243
- D. Quillen, “Higher algebraic K-theory. I”, Algebraic K-theory (Battelle Memorial Inst., Seattle, WA, 1972), v. I, Lecture Notes in Math., 341, Higher K-theories, Springer, Berlin, 1973, 85–147
- I. A. Panin, “The equicharacteristic case of the Gersten conjecture”, Теория чисел, алгебра и алгебраическая геометрия, Сборник статей. К 80-летию со дня рождения академика Игоря Ростиславовича Шафаревича, Труды МИАН, 241, Наука, МАИК «Наука/Интерпериодика», М., 2003, 169–178
- S. Bloch, A. Ogus, “Gersten's conjecture and the homology of schemes”, Ann. Sci. Ecole Norm. Sup. (4), 7 (1974), 181–201
- V. Voevodsky, “Cohomological theory of presheaves with transfers”, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 87–137
- И. А. Панин, “Совершенные тройки и гомотопии отображений мотивных пространств”, Изв. РАН. Сер. матем., 83:4 (2019), 158–193
- I. Panin, A. Smirnov, Push-forwards in oriented cohomology theories of algebraic varieties
- F. Morel, “An introduction to $mathbb A^1$-homotopy theory”, Contemporary developments in algebraic K-theory, ICTP Lect. Notes, XV, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, 357–441
- F. Morel, “The stable $mathbb A^1$-connectivity theorems”, K-Theory, 35:1-2 (2005), 1–68
- G. Garkusha, I. Panin, “Homotopy invariant presheaves with framed transfers”, Camb. J. Math., 8:1 (2020), 1–94
- А. Дружинин, И. Панин, “Сюръективность этального вырезания для гомотопически инвариантных предпучков с оснащенными трансферами”, Труды МИАН, 320 (2023) (в печати)
- A. Druzhinin, J. I. Kylling, Framed correspondences and the zeroth stable motivic homotopy group in odd characteristic
- F. Morel, $mathbb A^1$-algebraic topology over a field, Lecture Notes in Math., 2052, Springer, Heidelberg, 2012, x+259 pp.
- V. Voevodsky, “$mathbb A^1$-homotopy theory”, Proceedings of the international congress of mathematicians (Berlin, 1998), v. I, Doc. Math., Extra Vol. 1, 1998, 579–604
- F. Morel, A. Sawant, Cellular $mathbb A^1$-homology and the motivic version of Matsumoto's theorem
- A. Druzhinin, Strict $mathbb A^1$-homotopy invariance theorem with integral coefficients over fields
- R. W. Thomason, T. Trobaugh, “Higher algebraic K-theory of schemes and of derived categories”, The Grothendieck Festschrift, v. III, Progr. Math., 88, Birkhäuser Boston, Boston, MA, 1990, 247–435
- M. Schlichting, “The Mayer–Vietoris principle for Grothendieck–Witt groups of schemes”, Invent. Math., 179:2 (2010), 349–433
- I. Panin, C. Walter, “On the motivic commutative ring spectrum $mathbf{BO}$”, Алгебра и анализ, 30:6 (2018), 43–96
- J. P. Serre, “Les espaces fibres algebriques”, Anneaux de Chow et applications, Seminaire C. Chevalley, 3, Secretariat mathematique, Paris, 1958, Exp. No. 1, 37 pp.
- A. Grothendieck, “Le groupe de Brauer. II. Theorie cohomologique”, Dix exposes sur la cohomologie de schemas, Adv. Stud. Pure Math., 3, North-Holland, Amsterdam, 1968, 67–87
- Y. Nisnevich, “Rationally trivial principal homogeneous spaces, purity and arithmetic of reductive group schemes over extensions of two-dimensional regular local rings”, C. R. Acad. Sci. Paris Ser. I Math., 309:10 (1989), 651–655
- R. Fedorov, I. Panin, “A proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields”, Publ. Math. Inst. Hautes Etudes Sci., 122:1 (2015), 169–193
- И. А. Панин, “Доказательство гипотезы Гротендика–Серра о главных расслоениях над регулярным локальным кольцом, содержащим поле”, Изв. РАН. Сер. матем., 84:4 (2020), 169–186
- I. Panin, “On Grothendieck–Serre conjecture concerning principal bundles”, Proceedings of the international congress of mathematicians (ICM 2018) (Rio de Janeiro, 2018), v. 2, World Sci. Publ., Hackensack, NJ, 2018, 201–221
- R. Fedorov, On the purity conjecture of Nisnevich for torsors under reductive group schemes
- A. Grothendieck, “Elements de geometrie algebrique. IV. Etude locale des schemas et des morphismes de sch'emas”, Quatrième partie, Inst. Hautes Etudes Sci. Publ. Math., 32 (1967), 5–361
- I. Panin, “Oriented cohomology theories of algebraic varieties”, K-Theory, 30:3 (2003), 265–314
- I. Panin, “Oriented cohomology theories of algebraic varieties. II”, Homology Homotopy Appl., 11:1 (2009), 349–405
- A. Druzhinin, H. Kolderup, P. A. Ostvaer, Strict $mathbb A^1$-invariance over the integers
- L. Gruson, “Une propriete des couples henseliens”, Colloque d'algèbre commutative (Rennes, 1972), Publ. Sem. Math. Univ. Rennes, 1972, no. 4, Univ. Rennes, Rennes, 1972, Exp. No. 10, 13 pp.
- R. Elkik, “Solutions d'equations à coefficients dans un anneau henselien”, Ann. Sci. Ecole Norm. Sup. (4), 6:4 (1973), 553–603
Supplementary files
