Конечные группы бимероморфных автоморфизмов неунилинейчатых трехмерных кэлеровых многообразий
- Авторы: Прохоров Ю.Г.1,2, Шрамов К.А.1,2
-
Учреждения:
- Математический институт им. В.А. Стеклова Российской академии наук
- Лаборатория алгебраической геометрии и ее приложений, Национальный исследовательский университет «Высшая школа экономики»
- Выпуск: Том 213, № 12 (2022)
- Страницы: 86-108
- Раздел: Статьи
- URL: https://bakhtiniada.ru/0368-8666/article/view/133486
- DOI: https://doi.org/10.4213/sm9751
- ID: 133486
Цитировать
Аннотация
Ключевые слова
Об авторах
Юрий Геннадьевич Прохоров
Математический институт им. В.А. Стеклова Российской академии наук; Лаборатория алгебраической геометрии и ее приложений, Национальный исследовательский университет «Высшая школа экономики»
Email: prokhoro@mi-ras.ru
доктор физико-математических наук, профессор
Константин Александрович Шрамов
Математический институт им. В.А. Стеклова Российской академии наук; Лаборатория алгебраической геометрии и ее приложений, Национальный исследовательский университет «Высшая школа экономики»
Email: costya.shramov@gmail.com
доктор физико-математических наук, без звания
Список литературы
- V. L. Popov, “On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties”, Affine algebraic geometry, The Russell festschrift (McGill Univ., Montreal, QC, 2009), CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 289–311
- Yu. Prokhorov, C. Shramov, “Automorphism groups of compact complex surfaces”, Int. Math. Res. Not. IMRN, 2021:14 (2021), 10490–10520
- V. L. Popov, “The Jordan property for Lie groups and automorphism groups of complex spaces”, Math. Notes, 103:5 (2018), 811–819
- Jin Hong Kim, “Jordan property and automorphism groups of normal compact Kähler varieties”, Commun. Contemp. Math., 20:3 (2018), 1750024, 9 pp.
- Sheng Meng, F. Perroni, De-Qi Zhang, “Jordan property for automorphism groups of compact spaces in Fujiki's class $mathscr{C}$”, J. Topol., 15:2 (2022), 806–814
- Ю. Г. Прохоров, К. А. Шрамов, “Группы автоморфизмов трехмерных мойшезоновых многообразий”, Матем. заметки, 106:4 (2019), 636–640
- Ю. Г. Прохоров, К. А. Шрамов, “Конечные группы бимероморфных автоморфизмов унилинейчатых трехмерных кэлеровых многообразий”, Изв. РАН. Сер. матем., 84:5 (2020), 169–196
- T. Bandman, Yu. G. Zarhin, “Bimeromorphic automorphism groups of certain $mathbb{P}^1$-bundles”, Eur. J. Math., 7 (2021), 641–670
- T. Bandman, Yu. G. Zarhin, Automorphism groups of $mathbb{P}^1$-bundles over a non-uniruled base
- T. Bandman, Yu. G. Zarhin, Simple complex tori of algebraic dimension $0$
- Ю. Г. Зархин, “Комплексные торы, тэта-группы и их свойства Жордана”, Алгебра, теория чисел и алгебраическая геометрия, Сборник статей. Посвящается памяти академика Игоря Ростиславовича Шафаревича, Труды МИАН, 307, МИАН, М., 2019, 32–62
- A. Höring, Th. Peternell, “Minimal models for Kähler threefolds”, Invent. Math., 203:1-2 (2016), 217–264
- M. Brunella, “A positivity property for foliations on compact Kähler manifolds”, Internat. J. Math., 17:1 (2006), 35–43
- J.-P. Demailly, Th. Peternell, “A Kawamata–Viehweg vanishing theorem on compact Kähler manifolds”, J. Differential Geom., 63:2 (2003), 231–277
- Yu. Prokhorov, C. Shramov, “Jordan property for groups of birational selfmaps”, Compos. Math., 150:12 (2014), 2054–2072
- Ю. Г. Прохоров, “Эквивариантная программа минимальных моделей”, УМН, 76:3(459) (2021), 93–182
- A. Fujiki, “A theorem on bimeromorphic maps of Kähler manifolds and its applications”, Publ. Res. Inst. Math. Sci., 17:2 (1981), 735–754
- A. Golota, Jordan property for groups of bimeromorphic automorphisms of compact Kähler threefolds
- K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Notes written in collaboration with P. Cherenack, Lecture Notes in Math., 439, Springer-Verlag, Berlin–New York, 1975, xix+278 pp.
- M. Reid, “Canonical 3-folds”, Journees de geometrie algebrique (Angers, 1979), Sijthoff & Noordhoff, Alphen aan den Rijn–Germantown, MD, 1980, 273–310
- J. Kollar, Sh. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens, A. Corti, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp.
- J.-P. Serre, “Bounds for the orders of the finite subgroups of $G(k)$”, Group representation theory, EPFL Press, Lausanne, 2007, 405–450
- C. Birkenhake, H. Lange, Complex abelian varieties, Grundlehren Math. Wiss., 302, 2nd ed., Springer-Verlag, Berlin, 2004, xii+635 pp.
- P. Graf, “Algebraic approximation of Kähler threefolds of Kodaira dimension zero”, Math. Ann., 371:1-2 (2018), 487–516
- Ю. Г. Прохоров, К. А. Шрамов, “Ограниченные группы автоморфизмов компактных комплексных поверхностей”, Матем. сб., 211:9 (2020), 105–118
- В. В. Шокуров, “Трехмерные логперестройки”, Изв. РАН. Сер. матем., 56:1 (1992), 105–203
- Juanyong Wang, “On the Iitaka conjecture $C_{n,m}$ for Kähler fibre spaces”, Ann. Fac. Sci. Toulouse Math. (6), 30:4 (2021), 813–897
- J. Kollar, “Flops”, Nagoya Math. J., 113 (1989), 15–36
- N. Nakayama, “The lower semi-continuity of the plurigenera of complex varieties”, Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 551–590
- Вик. С. Куликов, “Разложение бирационального отображения трехмерных многообразий вне коразмерности 2”, Изв. АН СССР. Сер. матем., 46:4 (1982), 881–895
- W. P. Barth, K. Hulek, C. A. M. Peters, A. Van de Ven, Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), 4, 2nd ed., Springer-Verlag, Berlin, 2004, xii+436 pp.
- J. Varouchas, “Kähler spaces and proper open morphisms”, Math. Ann., 283:1 (1989), 13–52
Дополнительные файлы
