Finite groups of bimeromorphic self-maps of nonuniruled Kähler threefolds

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We prove the Jordan property for groups of bimeromorphic self-maps of three-dimensional compact Kähler varieties of nonnegative Kodaira dimension and positive irregularity.Bibliography: 32 titles.

作者简介

Yuri Prokhorov

Steklov Mathematical Institute of Russian Academy of Sciences; Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE)

Email: prokhoro@mi-ras.ru
Doctor of physico-mathematical sciences, Professor

Constantin Shramov

Steklov Mathematical Institute of Russian Academy of Sciences; Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE)

Email: costya.shramov@gmail.com
Doctor of physico-mathematical sciences, no status

参考

  1. V. L. Popov, “On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties”, Affine algebraic geometry, The Russell festschrift (McGill Univ., Montreal, QC, 2009), CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 289–311
  2. Yu. Prokhorov, C. Shramov, “Automorphism groups of compact complex surfaces”, Int. Math. Res. Not. IMRN, 2021:14 (2021), 10490–10520
  3. V. L. Popov, “The Jordan property for Lie groups and automorphism groups of complex spaces”, Math. Notes, 103:5 (2018), 811–819
  4. Jin Hong Kim, “Jordan property and automorphism groups of normal compact Kähler varieties”, Commun. Contemp. Math., 20:3 (2018), 1750024, 9 pp.
  5. Sheng Meng, F. Perroni, De-Qi Zhang, “Jordan property for automorphism groups of compact spaces in Fujiki's class $mathscr{C}$”, J. Topol., 15:2 (2022), 806–814
  6. Ю. Г. Прохоров, К. А. Шрамов, “Группы автоморфизмов трехмерных мойшезоновых многообразий”, Матем. заметки, 106:4 (2019), 636–640
  7. Ю. Г. Прохоров, К. А. Шрамов, “Конечные группы бимероморфных автоморфизмов унилинейчатых трехмерных кэлеровых многообразий”, Изв. РАН. Сер. матем., 84:5 (2020), 169–196
  8. T. Bandman, Yu. G. Zarhin, “Bimeromorphic automorphism groups of certain $mathbb{P}^1$-bundles”, Eur. J. Math., 7 (2021), 641–670
  9. T. Bandman, Yu. G. Zarhin, Automorphism groups of $mathbb{P}^1$-bundles over a non-uniruled base
  10. T. Bandman, Yu. G. Zarhin, Simple complex tori of algebraic dimension $0$
  11. Ю. Г. Зархин, “Комплексные торы, тэта-группы и их свойства Жордана”, Алгебра, теория чисел и алгебраическая геометрия, Сборник статей. Посвящается памяти академика Игоря Ростиславовича Шафаревича, Труды МИАН, 307, МИАН, М., 2019, 32–62
  12. A. Höring, Th. Peternell, “Minimal models for Kähler threefolds”, Invent. Math., 203:1-2 (2016), 217–264
  13. M. Brunella, “A positivity property for foliations on compact Kähler manifolds”, Internat. J. Math., 17:1 (2006), 35–43
  14. J.-P. Demailly, Th. Peternell, “A Kawamata–Viehweg vanishing theorem on compact Kähler manifolds”, J. Differential Geom., 63:2 (2003), 231–277
  15. Yu. Prokhorov, C. Shramov, “Jordan property for groups of birational selfmaps”, Compos. Math., 150:12 (2014), 2054–2072
  16. Ю. Г. Прохоров, “Эквивариантная программа минимальных моделей”, УМН, 76:3(459) (2021), 93–182
  17. A. Fujiki, “A theorem on bimeromorphic maps of Kähler manifolds and its applications”, Publ. Res. Inst. Math. Sci., 17:2 (1981), 735–754
  18. A. Golota, Jordan property for groups of bimeromorphic automorphisms of compact Kähler threefolds
  19. K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Notes written in collaboration with P. Cherenack, Lecture Notes in Math., 439, Springer-Verlag, Berlin–New York, 1975, xix+278 pp.
  20. M. Reid, “Canonical 3-folds”, Journees de geometrie algebrique (Angers, 1979), Sijthoff & Noordhoff, Alphen aan den Rijn–Germantown, MD, 1980, 273–310
  21. J. Kollar, Sh. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens, A. Corti, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp.
  22. J.-P. Serre, “Bounds for the orders of the finite subgroups of $G(k)$”, Group representation theory, EPFL Press, Lausanne, 2007, 405–450
  23. C. Birkenhake, H. Lange, Complex abelian varieties, Grundlehren Math. Wiss., 302, 2nd ed., Springer-Verlag, Berlin, 2004, xii+635 pp.
  24. P. Graf, “Algebraic approximation of Kähler threefolds of Kodaira dimension zero”, Math. Ann., 371:1-2 (2018), 487–516
  25. Ю. Г. Прохоров, К. А. Шрамов, “Ограниченные группы автоморфизмов компактных комплексных поверхностей”, Матем. сб., 211:9 (2020), 105–118
  26. В. В. Шокуров, “Трехмерные логперестройки”, Изв. РАН. Сер. матем., 56:1 (1992), 105–203
  27. Juanyong Wang, “On the Iitaka conjecture $C_{n,m}$ for Kähler fibre spaces”, Ann. Fac. Sci. Toulouse Math. (6), 30:4 (2021), 813–897
  28. J. Kollar, “Flops”, Nagoya Math. J., 113 (1989), 15–36
  29. N. Nakayama, “The lower semi-continuity of the plurigenera of complex varieties”, Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 551–590
  30. Вик. С. Куликов, “Разложение бирационального отображения трехмерных многообразий вне коразмерности 2”, Изв. АН СССР. Сер. матем., 46:4 (1982), 881–895
  31. W. P. Barth, K. Hulek, C. A. M. Peters, A. Van de Ven, Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), 4, 2nd ed., Springer-Verlag, Berlin, 2004, xii+436 pp.
  32. J. Varouchas, “Kähler spaces and proper open morphisms”, Math. Ann., 283:1 (1989), 13–52

补充文件

附件文件
动作
1. JATS XML

版权所有 © Prokhorov Y.G., Shramov C.A., 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».