Association between human leukocyte antigen alleles and endocrine disorders in 895-patient cohort from Russian clinical population

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Diseases of the endocrine system represent a serious public health problem and frequently can be caused by genetic factors or their combinations with environmental and lifestyle factors. Assessing relevant genetic factors is important to estimate the risk of endocrine pathologies in an individual patient before their manifestation. Identification of genetic variations in proteins of the major histocompatibility complex is important in connection with the autoimmune nature of many endocrine pathologies, including type 1 diabetes. In this study, we investigated the relationship between human leukocyte antigen (HLA) genes and 13 endocrine disorders by using experimental whole-exome sequencing profiles obtained for 895 patients from the National Medical Research Center for Endocrinology, Moscow. In addition, the linkage disequilibrium of the identified alleles in the context of the respective diagnoses was assessed. We identified totally 45 statistically significant associations between HLA alleles and specific diagnoses of endocrine pathologies. Among them, 33 were described for the first time and 12 were previously communicated for type 1 diabetes. Overall, 17 alleles were associated with type 1 diabetes and four with other forms of diabetes. Furthermore, three alleles were associated with obesity, five with adrenogenital diseases, three with hypoglycemia, and three with precocious puberty. Single alleles were found to be associated with congenital hypothyroidism without goiter, hyperfunction of pituitary gland, adrenomedullary hyperfunction, and short stature due to endocrine disorder. The study shows that early HLA typing can help detecting endocrine disorder genetic risk factors. In addition, associations with specific HLA alleles can broaden our understanding of the mechanisms of pathogenesis of relevant endocrine disorders.

About the authors

A. A. Buzdin

Endocrinology Research Center; I. M. Sechenov First Moscow State Medical University; Moscow Center for Advanced Studies; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry

Author for correspondence.
Email: zolotovskaya@oncobox.com
Moscow

P. A. Pugacheva

Endocrinology Research Center; Moscow Center for Advanced Studies

Email: zolotovskaya@oncobox.com
Moscow

D. V. Luppov

Endocrinology Research Center; Moscow Center for Advanced Studies

Email: zolotovskaya@oncobox.com
Moscow

M. A. Zolotovskaia

Endocrinology Research Center; Moscow Center for Advanced Studies

Email: zolotovskaya@oncobox.com
Moscow

M. I. Sorokin

Endocrinology Research Center; I. M. Sechenov First Moscow State Medical University

Email: zolotovskaya@oncobox.com
Moscow

S. A. Roumiantsev

Endocrinology Research Center

Email: zolotovskaya@oncobox.com
Moscow

A. G. Emelyanova

Endocrinology Research Center; Moscow Center for Advanced Studies

Email: zolotovskaya@oncobox.com
Moscow

O. O. Golounina

Endocrinology Research Center

Email: zolotovskaya@oncobox.com
Moscow

A. O. Alexeeva

Endocrinology Research Center; Moscow Center for Advanced Studies

Email: zolotovskaya@oncobox.com
Moscow

A. A. Emelianova

Endocrinology Research Center; I. M. Sechenov First Moscow State Medical University

Email: zolotovskaya@oncobox.com
Moscow

A. L. Novoselov

Endocrinology Research Center

Email: zolotovskaya@oncobox.com
Moscow

A. Y. Khristichenko

Endocrinology Research Center

Email: zolotovskaya@oncobox.com
Moscow

A. V. Matrosova

Endocrinology Research Center

Email: zolotovskaya@oncobox.com
Moscow

S. V. Popov

Endocrinology Research Center

Email: zolotovskaya@oncobox.com
Moscow

E. V. Plaksina

Endocrinology Research Center

Email: zolotovskaya@oncobox.com
Moscow

V. M. Petrov

Endocrinology Research Center

Email: zolotovskaya@oncobox.com
Moscow

A. R. Guselnikova

Endocrinology Research Center

Email: zolotovskaya@oncobox.com
Moscow

Z. E. Belaya

Endocrinology Research Center

Email: zolotovskaya@oncobox.com
Moscow

M. Woroncow

Lomonosov Moscow State University

Email: zolotovskaya@oncobox.com
Moscow

G. A. Melnichenko

Endocrinology Research Center

Email: zolotovskaya@oncobox.com
Moscow

E. A. Troshina

Endocrinology Research Center

Email: zolotovskaya@oncobox.com
Moscow

M. V. Shestakova

Endocrinology Research Center

Email: zolotovskaya@oncobox.com
Moscow

O. B. Bezlepkina

Endocrinology Research Center

Email: zolotovskaya@oncobox.com
Moscow

V. A. Peterkova

Endocrinology Research Center

Email: zolotovskaya@oncobox.com
Moscow

N. G. Mokrysheva

Endocrinology Research Center

Email: zolotovskaya@oncobox.com
Moscow

V. P. Chekhonin

Endocrinology Research Center

Email: zolotovskaya@oncobox.com
Moscow

I. I. Dedov

Endocrinology Research Center

Email: zolotovskaya@oncobox.com
Moscow

References

  1. Qin, D. (2019) Next-generation sequencing and its clinical application, Cancer Biol. Med., 16, 4-10, https://doi.org/10.20892/j.issn.2095-3941.2018.0055.
  2. Concannon, P., Erlich, H. A., Julier, C., Morahan, G., Nerup, J., Pociot, F., Todd, J. A., and Rich, S. S. (2005) Type 1 diabetes: evidence for susceptibility loci from four genome-wide linkage scans in 1,435 multiplex families, Diabetes, 54, 2995-3001, https://doi.org/10.2337/diabetes.54.10.2995.
  3. Maahs, D. M., West, N. A., Lawrence, J. M., and Mayer-Davis, E. J. (2010) Epidemiology of type 1 diabetes, Endocrinol. Metab. Clin. North Am., 39, 481-497, https://doi.org/10.1016/j.ecl.2010.05.011.
  4. Noble, J. A., Valdes, A. M., Cook, M., Klitz, W., Thomson, G., and Erlich, H. A. (1996) The role of HLA class II genes in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex families, Am. J. Hum. Genet, 59, 1134-1148.
  5. Liao, W.-L., Liu, T.-Y., Cheng, C.-F., Chou, Y.-P., Wang, T.-Y., Chang, Y.-W., Chen, S.-Y., and Tsai, F.-J. (2022) Analysis of HLA variants and Graves' disease and its comorbidities using a high resolution imputation system to examine electronic medical health records, Front. Endocrinol. (Lausanne), 13, 842673, https://doi.org/10.3389/fendo.2022.842673.
  6. Cambria, V., Beccuti, G., Gatti, F., Bona, C., Maccario, M., and Gasco, V. (2020) HLA DRB1*0415: a new possible genetic susceptibility factor for Hirata's disease, Endocrine, 67, 729-732, https://doi.org/10.1007/s12020-019-02132-3.
  7. Yang, J., Lernmark, A., Uusitalo, U. M., Lynch, K. F., Veijola, R., Winkler, C., Larsson, H. E., Rewers, M., She, J.-X., Ziegler, A. G., Simell, O. G., Hagopian, W. A., Akolkar, B., Krischer, J. P., and Vehik, K. (2014) Prevalence of obesity was related to HLA-DQ in 2-4-year-old children at genetic risk for type 1 diabetes, Int. J. Obes., 38, 1491-1496, https://doi.org/10.1038/ijo.2014.55.
  8. Gonzalez-Galarza, F. F., McCabe, A., Santos, E. J. M. Dos, Jones, J., Takeshita, L., Ortega-Rivera, N. D., Cid-Pavon, G. M. Del, Ramsbottom, K., Ghattaoraya, G., Alfirevic, A., Middleton, D., and Jones, A. R. (2019) Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools, Nucleic Acids Res., 48, D783-D788, https://doi.org/10.1093/nar/gkz1029.
  9. Andrews, S. (2010) FastQC - a quality control tool for high throughput sequence data, Babraham Bioinformatics.
  10. Li, H., and Durbin, R. (2009) Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, 25, 1754-1760, https://doi.org/10.1093/bioinformatics/btp324.
  11. Xie, C., Yeo, Z. X., Wong, M., Piper, J., Long, T., Kirkness, E. F., Biggs, W. H., Bloom, K., Spellman, S., Vierra-Green, C., Brady, C., Scheuermann, R. H., Telenti, A., Howard, S., Brewerton, S., Turpaz, Y., and Venter, J. C. (2017) Fast and accurate HLA typing from short-read next-generation sequence data with xHLA, Proc. Natl. Acad. Sci. USA, 114, 8059-8064, https://doi.org/10.1073/pnas.1707945114.
  12. Excoffier, L., and Slatkin, M. (1995) Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population, Mol. Biol. Evol., 12, 921-927, https://doi.org/10.1093/oxfordjournals.molbev.a040269.
  13. McKinney, W. (2010) Data structures for statistical computing in Python, Proceedings of the 9th Python in Science Conference, https://doi.org/10.25080/Majora-92bf1922-00a.
  14. Waskom, M. (2021) seaborn: statistical data visualization, J. Open Source Softw., 6, 3021, https://doi.org/10.21105/joss.03021.
  15. Hunter, J. D. (2007) Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 90-95, https://doi.org/10.1109/MCSE.2007.55.
  16. El-Amir, M. I., El-Feky, M. A., ELAbd, A., El-Melegy, T. T., and Ilonen, J. (2019) HLA-B*08 carry a risk for type 1 diabetes among cow's milk exposed Egyptian infants and unmarked linkage disequilibrium with DR3-DQA1*05-DQB1*02 haplotype, Egypt. J. Immunol., 26, 113-120.
  17. Mbunwe, E., van der Auwera, B. J., Vermeulen, I., Demeester, S., Dalem, A. Van, Balti, E. V., Aken, S. Van, Derdelinckx, L., Dorchy, H., Schepper, J. De, Schravendijk, C. van, Wenzlau, J. M., Hutton, J. C., Pipeleers, D., Weets, I., and Gorus, F. K. (2013) HLA-A*24 is an independent predictor of 5-year progression to diabetes in autoantibody-positive first-degree relatives of type 1 diabetic patients, Diabetes, 62, 1345-1350, https://doi.org/10.2337/db12-0747.
  18. Kiyotani, K., Mai, T. H., and Nakamura, Y. (2017) Comparison of exome-based HLA class I genotyping tools: identification of platform-specific genotyping errors, J. Hum. Genet., 62, 397-405, https://doi.org/10.1038/jhg.2016.141.
  19. Thuesen, N. H., Klausen, M. S., Gopalakrishnan, S., Trolle, T., and Renaud, G. (2022) Benchmarking freely available HLA typing algorithms across varying genes, coverages and typing resolutions, Front. Immunol., 13, 987655, https://doi.org/10.3389/fimmu.2022.987655.
  20. Noble, J. A., and Valdes, A. M. (2011) Genetics of the HLA region in the prediction of type 1 diabetes, Curr. Diab. Rep., 11, 533-542, https://doi.org/10.1007/s11892-011-0223-x.
  21. Erlich, H., Valdes, A. M., Noble, J., Carlson, J. A., Varney, M., Concannon, P., Mychaleckyj, J. C., Todd, J. A., Bonella, P., Fear, A. L., Lavant, E., Louey, A., and Moonsamy, P. (2008) HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk, Diabetes, 57, 1084-1092, https://doi.org/10.2337/db07-1331.
  22. Shen, J., Guo, T., Wang, T., Zhen, Y., Ma, X., Wang, Y., Zhang, Z.-X., Cai, J.-P., Mao, W., Zhu, F.-M., Li, J.-P., Wang, Z.-L., Zhang, D.-M., Liu, M.-L., Shan, X.-Y., Zhang, B.-W., Zhu, C.-F., Deng, Z.-H., Yu, W.-J., Chen, Q., Li, G.-L., Yang, T., Lu, S., Pan, Q.-Q., Fan, S., Wang, X.-Y., Zhao, X., Bi, X.-Y., Qiao, Y.-H., Su, P.-C., Lv, R., Li, G.-Y., Li, H.-C., Pei, B., Jiao, L.-X., Shen, G., Liu, J., Feng, Z.-H., Su, Y.-P., Xie, Y.-B., Di, W.-Y., Wang, X.-Y., Liu, X., Zhang, X.-P., Du, D., Liu, Q., Han, Y., Chen, J.-W., Gu, M., and Baier, L. J. (2018) HLA-B*07, HLA-DRB1*07, HLA-DRB1*12, and HLA-C*03:02 strongly associate with BMI: data from 1.3 million healthy Chinese adults, Diabetes, 67, 861-871, https://doi.org/10.2337/db17-0852.
  23. Oxtoby, E., Roberts, D. F., Wentzel, J., Frost, G., and Parkin, J. M. (1982) Congenital hypothyroidism and HLA, Tissue Antigens, 19, 1-5, https://doi.org/10.1111/j.1399-0039.1982.tb01409.x.
  24. Jacobsen, B. B., Brandt, N. J., and Svejgaard, A. (1981) HLA typing and congenital, primary hypothyroidism, Pediatr. Res., 15, 1568, https://doi.org/10.1203/00006450-198112000-00201.
  25. Koppens, P. F., Hoogenboezem, T., and Degenhart, H. J. (1989) Adrenogenital syndrome. I. Introduction, enzymology and heredity, Tijdschr Kindergeneeskd, 57, 129-135.
  26. Hadley, D., Hagopian, W., Liu, E., She, J.-X., Simell, O., Akolkar, B., Ziegler, A.-G., Rewers, M., Krischer, J. P., Chen, W.-M., Onengut-Gumuscu, S., Bugawan, T. L., Rich, S. S., Erlich, H., and Agardh, D. (2015) HLA-DPB1*04:01 protects genetically susceptible children from celiac disease autoimmunity in the TEDDY study, Am. J. Gastroenterol., 110, 915-920, https://doi.org/10.1038/ajg.2015.150.
  27. Ye, J., Long, A. E., Pearson, J. A., Taylor, H., Bingley, P. J., Williams, A. J. K., and Gillespie, K. M. (2015) Attenuated humoral responses in HLA-A*24-positive individuals at risk of type 1 diabetes, Diabetologia, 58, 2284-2287, https://doi.org/10.1007/s00125-015-3702-9.
  28. Deng, T., Lyon, C. J., Minze, L. J., Lin, J., Zou, J., Liu, J. Z., Ren, Y., Yin, Z., Hamilton, D. J., Reardon, P. R., Sherman, V., Wang, H. Y., Phillips, K. J., Webb, P., Wong, S. T. C., Wang, R., and Hsueh, W. A. (2013) Class II major histocompatibility complex plays an essential role in obesity-induced adipose inflammation, Cell. Metab., 17, 411-422, https://doi.org/10.1016/j.cmet.2013.02.009.
  29. Obradovic, M., Sudar-Milovanovic, E., Soskic, S., Essack, M., Arya, S., Stewart, A. J., Gojobori, T., and Isenovic, E. R. (2021) Leptin and obesity: role and clinical implication, Front. Endocrinol. (Lausanne), 12, 585887, https://doi.org/10.3389/fendo.2021.585887.
  30. Palmert, M. R., Radovick, S., and Boepple, P. A. (1998) Leptin levels in children with central precocious puberty, J. Clin. Endocrinol. Metab., 83, 2260-2265, https://doi.org/10.1210/jcem.83.7.4973.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».