NEW ASPECTS OF PROTEIN BIOSYNTHESIS INHIBITION BY PROLINE-RICH ANTIMICROBIAL PEPTIDES
- Autores: Shulenina O.V1,2, Tolstyko E.A1, Konevega A.L1,2,3, Poleskova E.V1,2
-
Afiliações:
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov of NRC “Kurchatov Institute”
- Peter the Great St. Petersburg Polytechnic University
- NRC “Kurchatov Institute”
- Edição: Volume 90, Nº 11 (2025)
- Páginas: 1638-1656
- Seção: Articles
- URL: https://bakhtiniada.ru/0320-9725/article/view/362444
- DOI: https://doi.org/10.7868/S3034529425110078
- ID: 362444
Citar
Resumo
Palavras-chave
Sobre autores
O. Shulenina
Petersburg Nuclear Physics Institute named by B. P. Konstantinov of NRC “Kurchatov Institute”; Peter the Great St. Petersburg Polytechnic University188300 Gatchina, Leningrad Region, Russia; 195251 St. Petersburg, Russia
E. Tolstyko
Petersburg Nuclear Physics Institute named by B. P. Konstantinov of NRC “Kurchatov Institute”188300 Gatchina, Leningrad Region, Russia
A. Konevega
Petersburg Nuclear Physics Institute named by B. P. Konstantinov of NRC “Kurchatov Institute”; Peter the Great St. Petersburg Polytechnic University; NRC “Kurchatov Institute”
Email: konevega_al@pnpi.nrcki.ru
188300 Gatchina, Leningrad Region, Russia; 195251 St. Petersburg, Russia; 123098 Moscow, Russia
E. Poleskova
Petersburg Nuclear Physics Institute named by B. P. Konstantinov of NRC “Kurchatov Institute”; Peter the Great St. Petersburg Polytechnic University188300 Gatchina, Leningrad Region, Russia; 195251 St. Petersburg, Russia
Bibliografia
- Dini, I., De Biasi, M. G., and Mancusi, A. (2022) An overview of the potentialities of antimicrobial peptides derived from natural sources, Antibiotics (Basel), 11, 1483, https://doi.org/10.3390/antibiotics11111483.
- Huan, Y., Kong, Q., Mou, H., and Yi, H. (2020) Antimicrobial peptides: classification, design, application and research progress in multiple fields, Front. Microbiol., 11, 582779, https://doi.org/10.3389/fmicb.2020.582779.
- Valdez-Miramontes, C. E., De Haro-Acosta, J., Aréchiga-Flores, C. F., Verdiguel-Fernández, L., and Rivas-Santiago, B. (2021) Antimicrobial peptides in domestic animals and their applications in veterinary medicine, Peptides, 142, 170576, https://doi.org/10.1016/J.PEPTIDES.2021.170576.
- Yu, G., Baeder, D. Y., Regoes, R. R., and Rolff, J. (2018) Predicting drug resistance evolution: Insights from antimicrobial peptides and antibiotics, Proc. R. Soc. B Biol. Sci., 285, 20172687, https://doi.org/10.1098/rspb.2017.2687.
- Kintses, B., Méhi, O., Ari, E., Számel, M., Györkei, Á., Jangir, P. K., Nagy, I., Pál, F., Fekete, G., Tengölics, R., Nyerges, Á., Likó, I., Bálint, A., Molnár, T., Bálint, B., Vásárhelyi, B. M., Bustamante, M., Papp, B., and Pál, C. (2019) Phylogenetic barriers to horizontal transfer of antimicrobial peptide resistance genes in the human gut microbiota, Nat. Microbiol., 4, 447-458, https://doi.org/10.1038/s41564-018-0313-5.
- De los Santos, L., Beckman, R. L., DeBarro, C., Keener, J. E., Torres, M. D. T., de la Fuente-Nunez, C., Brodbelt, J. S., and Fleeman, R. M. (2024) Polyproline peptide targets Klebsiella pneumoniae polysaccharides to collapse biofilms, Cell Rep. Phys. Sci., 5, 101869, https://doi.org/10.1016/j.xcrp.2024.101869.
- Xuan, J., Feng, W., Wang, J., Wang, R., Zhang, B., Bo, L., Chen, Z. S., Yang, H., and Sun, L. (2023) Antimicrobial peptides for combating drug-resistant bacterial infections, Drug Resist. Updates, 68, 100954, https://doi.org/10.1016/j.drup.2023.100954.
- Canè, C., Tammaro, L., Duilio, A., and Di Somma, A. (2024) Investigation of the mechanism of action of AMPs from amphibians to identify bacterial protein targets for therapeutic applications, Antibiotics (Basel), 13, 1076, https://doi.org/10.3390/antibiotics13111076.
- Kumar, P., Kizhakkedathu, J. N., and Straus, S. K. (2018) Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo, Biomolecules, 8, 4, https://doi.org/10.3390/biom8010004.
- Eckert, R. (2011) Road to clinical efficacy: challenges and novel strategies for antimicrobial peptide development, Fut. Microbiol., 6, 635-651, https://doi.org/10.2217/FMB.11.27.
- Yeung, A. T. Y., Gellatly, S. L., and Hancock, R. E. W. (2011) Multifunctional cationic host defence peptides and their clinical applications, Cell. Mol. Life Sci., 68, 2161, https://doi.org/10.1007/S00018-011-0710-X.
- Chi, Y., Peng, Y., Zhang, S., Tang, S., Zhang, W., Dai, C., and Ji, S. (2024) A rapid in vivo toxicity assessment method for antimicrobial peptides, Toxics, 12, 387, https://doi.org/10.3390/TOXICS12060387.
- Sola, R., Mardirossian, M., Beckert, B., De Luna, L. S., Prickett, D., Tossi, A., Wilson, D. N., and Scocchi, M. (2020) Characterization of cetacean proline-rich antimicrobial peptides displaying activity against eskape pathogens, Int. J. Mol. Sci., 21, 7367, https://doi.org/10.3390/ijms21197367.
- Paulsen, V. S., Mardirossian, M., Blencke, H. M., Benincasa, M., Runti, G., Nepa, M., Haug, T., Stensvåg, K., and Scocchi, M. (2016) Inner membrane proteins YgdD and SbmA are required for the complete susceptibility of Escherichia coli to the proline-rich antimicrobial peptide arasin 1(1-25), Microbiology, 162, 601-609, https:// doi.org/10.1099/mic.0.000249.
- Stączek, S., Kunat-Budzyńska, M., Cytryńska, M., and Zdybicka-Barabas, A. (2024) Proline-rich antimicrobial peptides from invertebrates, Molecules, 29, 5864, https://doi.org/10.3390/molecules29245864.
- Raulf, K., Koller, T. O., Beckert, B., Lepak, A., Morici, M., Mardirossian, M., Scocchi, M., Bange, G., and Wilson, D. N. (2025) The structure of the Vibrio natriegens 70S ribosome in complex with the proline-rich antimicrobial peptide Bac5(1-17), Nucleic Acids Res., 53, gkaf324, https://doi.org/10.1093/NAR/GKAF324.
- Ciociola, T., Giovati, L., Giovannelli, A., Conti, S., Castagnola, M., and Vitali, A. (2018) The activity of a mammalian proline-rich peptide against Gram-negative bacteria, including drug-resistant strains, relies on a nonmembranolytic mode of action, Infect. Drug Resist., 11, 969, doi: 10.2147/IDR.S165179.
- Thakur, A., Sharma, A., Alajangi, H. K., Jaiswal, P. K., Lim, Y. B., Singh, G., and Barnwal, R. P. (2022) In pursuit of next-generation therapeutics: Antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications, Int. J. Biol. Macromol., 218, 135-156, https://doi.org/10.1016/J.IJBIOMAC.2022.07.103.
- Mahlapuu, M., Björn, C., and Ekblom, J. (2020) Antimicrobial peptides as therapeutic agents: opportunities and challenges, Crit. Rev. Biotechnol., 40, 978-992, https://doi.org/10.1080/07388551.2020.1796576.
- Graf, M., and Wilson, D. N. (2019) Intracellular antimicrobial peptides targeting the protein synthesis machinery, Adv. Exp. Med. Biol., 1117, 73-89, https://doi.org/10.1007/978-981-13-3588-4_6.
- Casteels, P., Ampe, C., Jacobs, F., Vaeck, M., and Tempst, P. (1989) Apidaecins: antibacterial peptides from honeybees, EMBO J., 8, 2387-2391, https://doi.org/10.1002/J.1460-2075.1989.TB08368.X.
- Huang, W., Baliga, C., Aleksandrova, E. V., Atkinson, G., Polikanov, Y. S., Vázquez-Laslop, N., and Mankin, A. S. (2024) Activity, structure, and diversity of type II proline-rich antimicrobial peptides from insects, EMBO Rep., 25, 5194-5211, https://doi.org/10.1038/s44319-024-00277-5.
- Panteleev, P. V., Pichkur, E. B., Kruglikov, R. N., Paleskava, A., Shulenina, O. V., Bolosov, I. A., Bogdanov, I. V., Safronova, V. N., Balandin, S. V., Marina, V. I., Kombarova, T. I., Korobova, O. V., Shamova, O. V., Myasnikov, A. G., Borzilov, A. I., Osterman, I. A., Sergiev, P. V., Bogdanov, A. A., Dontsova, O. A., Konevega, A. L., and Ovchinnikova, T. V. (2024) Rumicidins are a family of mammalian host-defense peptides plugging the 70S ribosome exit tunnel, Nat. Commun., 15, 8925, https://doi.org/10.1038/s41467-024-53309-y.
- Wang, G. (2014) Human antimicrobial peptides and proteins, Pharmaceuticals (Basel), 7, 545-594, https://doi.org/10.3390/ph7050545.
- Lauer, S. M., Reepmeyer, M., Berendes, O., Klepacki, D., Gasse, J., Gabrielli, S., Grubmüller, H., Bock, L. V., Krizsan, A., Nikolay, R., Spahn, C. M. T., and Hoffmann, R. (2024) Multimodal binding and inhibition of bacterial ribosomes by the antimicrobial peptides Api137 and Api88, Nat. Commun., 15, 3945, https://doi.org/10.1038/s41467-024-48027-4.
- Zanetti, M., Litteri, L., Gennaro, R., Horstmann, H., and Romeo, D. (1990) Bactenecins, defense polypeptides of bovine neutrophils, are generated from precursor molecules stored in the large granules, J. Cell Biol., 111, 1363-1371, https://doi.org/10.1083/JCB.111.4.1363.
- Zanetti, M., Litteri, L., Griffiths, G., Gennaro, R., and Romeo, D. (1991) Stimulus-induced maturation of probactenecins, precursors of neutrophil antimicrobial polypeptides, J. Immunol., 146, 4295-4300.
- Storici, P., and Zanetti, M. (1993) A novel cDNA sequence encoding a pig leukocyte antimicrobial peptide with a cathelin-like pro-sequence, Biochem. Biophys. Res. Commun., 196, 1363-1368, https://doi.org/10.1006/BBRC.1993.2403.
- Zanetti, M., Del Sal, G., Storici, P., Schneider, C., and Romeo, D. (1993) The cDNA of the neutrophil antibiotic Bac5 predicts a pro-sequence homologous to a cysteine proteinase inhibitor that is common to other neutrophil antibiotics, J. Biol. Chem., 268, 522-526, https://doi.org/10.1016/s0021-9258(18)54182-x.
- Bulet, P., Dimarcq, J. L., Hetru, C., Lagueux, M., Charlet, M., Hegy, G., Van Dorsselaer, A., and Hoffmann, J. A. (1993) A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution, J. Biol. Chem., 268, 14893-14897, https://doi.org/10.1016/s0021-9258(18)82417-6.
- Casteels-Josson, K., Capaci, T., Casteels, P., and Tempst, P. (1993) Apidaecin multipeptide precursor structure: a putative mechanism for amplification of the insect antibacterial response., EMBO J., 12, 1569-1578, https://doi.org/10.1002/J.1460-2075.1993.TB05801.X.
- Scocchi, M., Skerlavaj, B., Romeo, D., and Gennaro, R. (1992) Proteolytic cleavage by neutrophil elastase converts inactive storage proforms to antibacterial bactenecins, Eur. J. Biochem., 209, 589-595, https://doi.org/10.1111/J.1432-1033.1992.TB17324.X.
- Casteels, P., and Tempst, P. (1994) Apidaecin-type peptide antibiotics function through a nonporeforming mechanism involving stereospecificity, Biochem. Biophys. Res. Commun., 199, 339-345, https://doi.org/10.1006/bbrc.1994.1234.
- Scocchi, M., Tossi, A., and Gennaro, R. (2011) Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action, Cell. Mol. Life Sci., 68, 2317-2330, https://doi.org/10.1007/S00018-011-0721-7.
- Runti, G., del Lopez Ruiz, M. C., Stoilova, T., Hussain, R., Jennions, M., Choudhury, H. G., Benincasa, M., Gennaro, R., Beis, K., and Scocchi, M. (2013) Functional characterization of SbmA, a bacterial inner membrane transporter required for importing the antimicrobial peptide Bac7(1-35), J. Bacteriol., 195, 5343-5351, https://doi.org/10.1128/JB.00818-13.
- Ghilarov, D., Inaba-Inoue, S., Stepien, P., Qu, F., Michalczyk, E., Pakosz, Z., Nomura, N., Ogasawara, S., Walker, G. C., Rebuffat, S., Iwata, S., Heddle, J. G., and Beis, K. (2021) Molecular mechanism of SbmA, a promiscuous transporter exploited by antimicrobial peptides, Sci. Adv., 7, eabj5363, https://doi.org/10.1126/SCIADV.ABJ5363.
- Krizsan, A., Knappe, D., and Hoffmann, R. (2015) Influence of the yjiL-mdtM gene cluster on the antibacterial activity of proline-rich antimicrobial peptides overcoming Escherichia coli resistance induced by the missing SbmA transporter system, Antimicrob. Agents Chemother., 59, 5992, https://doi.org/10.1128/AAC.01307-15.
- Slotboom, D. J., Ettema, T. W., Nijland, M., and Thangaratnarajah, C. (2020) Bacterial multi-solute transporters, FEBS Lett., 594, 3898-3907, https://doi.org/10.1002/1873-3468.13912.
- Mardirossian, M., Sola, R., Beckert, B., Valencic, E., Collis, D. W. P., Borišek, J., Armas, F., Di Stasi, A., Buchmann, J., Syroegin, E. A., Polikanov, Y. S., Magistrato, A., Hilpert, K., Wilson, D. N., and Scocchi, M. (2020) Peptide inhibitors of bacterial protein synthesis with broad spectrum and SbmA-independent bactericidal activity against clinical pathogens, J. Med. Chem., 63, 9590-9602, https://doi.org/10.1021/acs.jmedchem.0c00665.
- Mardirossian, M., Pérébaskine, N., Benincasa, M., Gambato, S., Hofmann, S., Huter, P., Müller, C., Hilpert, K., Innis, C. A., Tossi, A., and Wilson, D. N. (2018) The dolphin proline-rich antimicrobial peptide Tur1A inhibits protein synthesis by targeting the bacterial ribosome, Cell Chem. Biol., 25, 530, https://doi.org/10.1016/J.CHEMBIOL.2018.02.004.
- Lai, P. K., Tresnak, D. T., and Hackel, B. J. (2019) Identification and elucidation of proline-rich antimicrobial peptides with enhanced potency and delivery, Biotechnol. Bioeng., 116, 2439-2450, https://doi.org/10.1002/bit.27092.
- Knappe, D., Zahn, M., Sauer, U., Schiffer, G., Sträter, N., and Hoffmann, R. (2011) Rational design of oncocin derivatives with superior protease stabilities and antibacterial activities based on the high-resolution structure of the oncocin-DnaK complex, ChemBioChem, 12, 874-876, https://doi.org/10.1002/CBIC.201000792.
- Zahn, M., Berthold, N., Kieslich, B., Knappe, D., Hoffmann, R., and Sträter, N. (2013) Structural studies on the forward and reverse binding modes of peptides to the chaperone DnaK, J. Mol. Biol., 425, 2463-2479, https://doi.org/10.1016/J.JMB.2013.03.041.
- Scocchi, M., Lüthy, C., Decarli, P., Mignogna, G., Christen, P., and Gennaro, R. (2009) The proline-rich antibacterial peptide Bac7 binds to and inhibits in vitro the molecular chaperone DnaK, Int. J. Peptide Res. Ther., 15, 147-155, https://doi.org/10.1007/s10989-009-9182-3.
- Krizsan, A., Volke, D., Weinert, S., Sträter, N., Knappe, D., and Hoffmann, R. (2014) Insect-derived proline-rich antimicrobial peptides kill bacteria by inhibiting bacterial protein translation at the 70S ribosome, Angewandte Chemie, 53, 12236-12239, https://doi.org/10.1002/anie.201407145.
- Wilson, D. N. (2014) Ribosome-targeting antibiotics and mechanisms of bacterial resistance, Nat. Rev. Microbiol., 12, 35-48, https://doi.org/10.1038/nrmicro3155.
- Polikanov, Y. S., Aleksashin, N. A., Beckert, B., and Wilson, D. N. (2018) The mechanisms of action of ribosome-targeting peptide antibiotics, Front. Mol. Biosci., 5, 48, https://doi.org/10.3389/fmolb.2018.00048.
- Mangano, K., Klepacki, D., Ohanmu, I., Baliga, C., Huang, W., Brakel, A., Krizsan, A., Polikanov, Y. S., Hoffmann, R., Vázquez-Laslop, N., and Mankin, A. S. (2023) Inhibition of translation termination by the antimicrobial peptide Drosocin, Nat. Chem. Biol., 19, 1082-1090, https://doi.org/10.1038/s41589-023-01300-x.
- Gagnon, M. G., Roy, R. N., Lomakin, I. B., Florin, T., Mankin, A. S., and Steitz, T. A. (2016) Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition, Nucleic Acids Res., 44, 2439-2450, https://doi.org/10.1093/nar/gkw018.
- Roy, R. N., Lomakin, I. B., Gagnon, M. G., and Steitz, T. A. (2015) The mechanism of inhibition of protein synthesis by the proline-rich peptide oncocin, Nat. Struct. Mol. Biol., 22, 466-469, https://doi.org/10.1038/nsmb.3031.
- Seefeldt, A. C., Nguyen, F., Antunes, S., Pérébaskine, N., Graf, M., Arenz, S., Inampudi, K. K., Douat, C., Guichard, G., Wilson, D. N., and Innis, C. A. (2015) The proline-rich antimicrobial peptide Onc112 inhibits translation by blocking and destabilizing the initiation complex, Nat. Struct. Mol. Biol., 22, 470-475, https://doi.org/10.1038/nsmb.3034.
- Seefeldt, A. C., Graf, M., Pérébaskine, N., Nguyen, F., Arenz, S., Mardirossian, M., Scocchi, M., Wilson, D. N., and Innis, C. A. (2016) Structure of the mammalian antimicrobial peptide Bac7(1-16) bound within the exit tunnel of a bacterial ribosome, Nucleic Acids Res., 44, 2429, https://doi.org/10.1093/NAR/GKV1545.
- Florin, T., Maracci, C., Graf, M., Karki, P., Klepacki, D., Berninghausen, O., Beckmann, R., VázquezLaslop, N., Wilson, D. N., Rodnina, M. V., and Mankin, A. S. (2017) An antimicrobial peptide that inhibits translation by trapping release factors on the ribosome, Nat. Struct. Mol. Biol., 24, 752-757, https://doi.org/10.1038/nsmb.3439.
- Niidome, T., Mihara, H., Oka, M., Hayashi, T., Saiki, T., Yoshida, K., and Aoyagi, H. (1998) Structure and property of model peptides of proline/arginine-rich region in bactenecin 5, Peptide Res., 51, 337-345, https://doi.org/10.1111/J.1399-3011.1998.TB01224.X.
- Ohgita, T., Takechi-Haraya, Y., Okada, K., Matsui, S., Takeuchi, M., Saito, C., Nishitsuji, K., Uchimura, K., Kawano, R., Hasegawa, K., Sakai-Kato, K., Akaji, K., Izutsu, K. I., and Saito, H. (2020) Enhancement of direct membrane penetration of arginine-rich peptides by polyproline II helix structure, Biochim. Biophys. Acta, 1862, 183403, https://doi.org/10.1016/j.bbamem.2020.183403.
- Shinnar, A. E., Butler, K. L., and Park, H. J. (2003) Cathelicidin family of antimicrobial peptides: Proteolytic processing and protease resistance, Bioorg. Chem., 31, 425-436, https://doi.org/10.1016/S0045-2068(03)00080-4.
- Guida, F., Benincasa, M., Zahariev, S., Scocchi, M., Berti, F., Gennaro, R., and Tossi, A. (2015) Effect of size and N-terminal residue characteristics on bacterial cell penetration and antibacterial activity of the proline-rich peptide Bac7, J. Med. Chem., 58, 1195-1204, https://doi.org/10.1021/JM501367P.
- Podda, E., Benincasa, M., Pacor, S., Micali, F., Mattiuzzo, M., Gennaro, R., and Scocchi, M. (2006) Dual mode of action of Bac7, a proline-rich antibacterial peptide, Biochim. Biophys. Acta, 1760, 1732-1740, https://doi.org/10.1016/j.bbagen.2006.09.006.
- Koch, P., Schmitt, S., Heynisch, A., Gumpinger, A., Wüthrich, I., Gysin, M., Shcherbakov, D., Hobbie, S. N., Panke, S., and Held, M. (2022) Optimization of the antimicrobial peptide Bac7 by deep mutational scanning, BMC Biol., 20, 114, https://doi.org/10.1186/s12915-022-01304-4.
- Benincasa, M., Scocchi, M., Podda, E., Skerlavaj, B., Dolzani, L., and Gennaro, R. (2004) Antimicrobial activity of Bac7 fragments against drug-resistant clinical isolates, Peptides, 25, 2055-2061, https://doi.org/10.1016/J.PEPTIDES.2004.08.004.
- Tokunaga, Y., Niidome, T., Hatakeyama, T., and Aoyagi, H. (2001) Antibacterial activity of bactenecin 5 fragments and their interaction with phospholipid membranes, J. Peptide Sci., 7, 297-304, https://doi.org/10.1002/PSC.317.
- Mardirossian, M., Barrière, Q., Timchenko, T., Müller, C., Pacor, S., Mergaert, P., Scocchi, M., and Wilsona, D. N. (2018) Fragments of the nonlytic proline-rich antimicrobial peptide Bac5 kill Escherichia coli cells by inhibiting protein synthesis, Antimicrob. Agents Chemother., 62, https://doi.org/10.1128/AAC.00534-18.
- Mardirossian, M., Sola, R., Degasperi, M., and Scocchi, M. (2019) Search for shorter portions of the proline-rich antimicrobial peptide fragment Bac5(1-25) that retain antimicrobial activity by blocking protein synthesis, ChemMedChem, 14, 343-348, https://doi.org/10.1002/cmdc.201800734.
- Graf, M., Huter, P., Maracci, C., Peterek, M., Rodnina, M. V., and Wilson, D. N. (2018) Visualization of translation termination intermediates trapped by the Apidaecin 137 peptide during RF3-mediated recycling of RF1, Nat.Commun., 9, 3053, https://doi.org/10.1038/s41467-018-05465-1.
- Baliga, C., Brown, T. J., Florin, T., Colon, S., Shah, V., Skowron, K. J., Kefi, A., Szal, T., Klepacki, D., Moore, T. W., Vázquez-Laslop, N., and Mankin, A. S. (2021) Charting the sequence-activity landscape of peptide inhibitors of translation termination, Proc. Natl. Acad. Sci. USA, 118, e2026465118, https://doi.org/10.1073/PNAS.2026465118.
- Koller, T. O., Morici, M., Berger, M., Safdari, H. A., Lele, D. S., Beckert, B., Kaur, K. J., and Wilson, D. N. (2023) Structural basis for translation inhibition by the glycosylated drosocin peptide, Nat. Chem. Biol., 19, 1072-1081, https://doi.org/10.1038/s41589-023-01293-7.
- Bulet, P., Hetru, C., Dimarcq, J. L., and Hoffmann, D. (1999) Antimicrobial peptides in insects, structure and function, Dev. Compar. Immunol., 23, 329-344, https://doi.org/10.1016/S0145-305X(99)00015-4.
- Gobbo, M., Biondi, L., Filira, F., Gennaro, R., Benincasa, M., Scolaro, B., and Rocchi, R. (2002) Antimicrobial peptides: synthesis and antibacterial activity of linear and cyclic drosocin and apidaecin 1b analogues, J. Med. Chem., 45, 4494-4504, https://doi.org/10.1021/jm020861d.
- Chan, K. H., Petrychenko, V., Mueller, C., Maracci, C., Holtkamp, W., Wilson, D. N., Fischer, N., and Rodnina, M. V. (2020) Mechanism of ribosome rescue by alternative ribosome-rescue factor B, Nat. Commun., 11, 4106, https://doi.org/10.1038/s41467-020-17853-7.
- Chadani, Y., Ono, K., Kutsukake, K., and Abo, T. (2011) Escherichia coli YaeJ protein mediates a novel ribosomerescue pathway distinct from SsrA- and ArfA-mediated pathways, Mol. Microbiol., 80, 772-785, https://doi.org/10.1111/j.1365-2958.2011.07607.x.
- Adamski, F. M., McCaughan, K. K., Jørgensen, F., Kurland, C. G., and Tate, W. P. (1994) The concentration of polypeptide chain release factors 1 and 2 at different growth rates of Escherichia coli, J. Mol. Biol., 238, 302-308, https://doi.org/10.1006/jmbi.1994.1293.
- Mangano, K., Florin, T., Shao, X., Klepacki, D., Chelysheva, I., Ignatova, Z., Gao, Y., Mankin, A. S., and VázquezLaslop, N. (2020) Genome-wide effects of the antimicrobial peptide apidaecin on translation termination in bacteria, ELife, 9, e62655, https://doi.org/10.7554/eLife.62655.
- Berthold, N., Czihal, P., Fritsche, S., Sauer, U., Schiffer, G., Knappe, D., Alber, G., and Hoffmann, R. (2013) Novel apidaecin 1b analogs with superior serum stabilities for treatment of infections by Gram-negative pathogens, Antimicrob. Agents Chemother., 57, 402-409, https://doi.org/10.1128/aac.01923-12.
- Ferbitz, L., Maier, T., Patzelt, H., Bukau, B., Deuerling, E., and Ban, N. (2004) Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins, Nature, 431, 590-596, https://doi.org/10.1038/nature02899.
- Buskiewicz, I., Deuerling, E., Gu, S. Q., Jöckel, J., Rodnina, M. V., Bukau, B., and Wintermeyer, W. (2004) Trigger factor binds to ribosome-signal-recognition particle (SRP) complexes and is excluded by binding of the SRP receptor, Proc. Natl. Acad. Sci. USA, 101, 7902-7906, https://doi.org/10.1073/pnas.0402231101.
- Wild, K., Halic, M., Sinning, I., and Beckmann, R. (2004) SRP meets the ribosome, Nat. Struct. Mol. Biol., 11, 1049-1053, https://doi.org/10.1038/nsmb853.
- Gu, S. Q., Peske, F., Wieden, H. J., Rodnina, M. V., and Wintermeyer, W. (2003) The signal recognition particle binds to protein L23 at the peptide exit of the Escherichia coli ribosome, RNA, 9, 566-573, https://doi.org/10.1261/RNA.2196403.
- Lauer, S. M., Gasse, J., Krizsan, A., Reepmeyer, M., Sprink, T., Nikolay, R., Spahn, C. M. T., and Hoffmann, R. (2025) The proline-rich antimicrobial peptide Api137 disrupts large ribosomal subunit assembly and induces misfolding, Nat. Commun., 16, 567, https://doi.org/10.1038/s41467-025-55836-8.
- Krizsan, A., Prahl, C., Goldbach, T., Knappe, D., and Hoffmann, R. (2015) Short proline-rich antimicrobial peptides inhibit either the bacterial 70S ribosome or the assembly of its large 50S subunit, ChemBioChem, 16, 2304-2308, https://doi.org/10.1002/CBIC.201500375.
- Moerke, N. J. (2009) Fluorescence polarization (FP) Assays for monitoring peptide-protein or nucleic acid-protein binding, Curr. Protocols Chem. Biol., 1, 1-15, https://doi.org/10.1002/9780470559277.ch090102.
- Kolano, L., Knappe, D., Volke, D., Sträter, N., and Hoffmann, R. (2020) Ribosomal target-binding sites of antimicrobial peptides Api137 and Onc112 are conserved among pathogens indicating new lead structures to develop novel broad-spectrum antibiotics, ChemBioChem, 21, 2628-2634, https://doi.org/10.1002/CBIC.202000109.
- Ludwig, T., Krizsan, A., Mohammed, G. K., and Hoffmann, R. (2022) Antimicrobial activity and 70S ribosome binding of apidaecin-derived Api805 with increased bacterial uptake rate, Antibiotics, 11, 430, https://doi.org/10.3390/antibiotics11040430.
- Noeske, J., Huang, J., Olivier, N. B., Giacobbe, R. A., Zambrowski, M., and Cate, J. H. D. (2014) Synergy of streptogramin antibiotics occurs independently of their effects on translation, Antimicrob. Agents Chemother., 58, 5269-5279, https://doi.org/10.1128/AAC.03389-14.
Arquivos suplementares

