НОВЫЕ АСПЕКТЫ ИНГИБИРОВАНИЯ БИОСИНТЕЗА БЕЛКА ПРОЛИН-БОГАТЫМИ АНТИМИКРОБНЫМИ ПЕПТИДАМИ
- Авторы: Шуленина О.В1,2, Толстыко Е.А1, Коневега А.Л1,2,3, Полесскова Е.В1,2
-
Учреждения:
- Петербургский институт ядерной физики им. Б. П. Константинова Национального исследовательского центра «Курчатовский институт»
- Санкт-Петербургский политехнический университет Петра Великого
- Национальный исследовательский центр «Курчатовский институт»
- Выпуск: Том 90, № 11 (2025)
- Страницы: 1638-1656
- Раздел: Статьи
- URL: https://bakhtiniada.ru/0320-9725/article/view/362444
- DOI: https://doi.org/10.7868/S3034529425110078
- ID: 362444
Цитировать
Аннотация
Ключевые слова
Об авторах
О. В Шуленина
Петербургский институт ядерной физики им. Б. П. Константинова Национального исследовательского центра «Курчатовский институт»; Санкт-Петербургский политехнический университет Петра Великого188300 Гатчина, Ленинградская обл., Россия; 195251 Санкт-Петербург, Россия
Е. А Толстыко
Петербургский институт ядерной физики им. Б. П. Константинова Национального исследовательского центра «Курчатовский институт»188300 Гатчина, Ленинградская обл., Россия
А. Л Коневега
Петербургский институт ядерной физики им. Б. П. Константинова Национального исследовательского центра «Курчатовский институт»; Санкт-Петербургский политехнический университет Петра Великого; Национальный исследовательский центр «Курчатовский институт»
Email: konevega_al@pnpi.nrcki.ru
188300 Гатчина, Ленинградская обл., Россия; 195251 Санкт-Петербург, Россия; 123098 Москва, Россия
Е. В Полесскова
Петербургский институт ядерной физики им. Б. П. Константинова Национального исследовательского центра «Курчатовский институт»; Санкт-Петербургский политехнический университет Петра Великого188300 Гатчина, Ленинградская обл., Россия; 195251 Санкт-Петербург, Россия
Список литературы
- Dini, I., De Biasi, M. G., and Mancusi, A. (2022) An overview of the potentialities of antimicrobial peptides derived from natural sources, Antibiotics (Basel), 11, 1483, https://doi.org/10.3390/antibiotics11111483.
- Huan, Y., Kong, Q., Mou, H., and Yi, H. (2020) Antimicrobial peptides: classification, design, application and research progress in multiple fields, Front. Microbiol., 11, 582779, https://doi.org/10.3389/fmicb.2020.582779.
- Valdez-Miramontes, C. E., De Haro-Acosta, J., Aréchiga-Flores, C. F., Verdiguel-Fernández, L., and Rivas-Santiago, B. (2021) Antimicrobial peptides in domestic animals and their applications in veterinary medicine, Peptides, 142, 170576, https://doi.org/10.1016/J.PEPTIDES.2021.170576.
- Yu, G., Baeder, D. Y., Regoes, R. R., and Rolff, J. (2018) Predicting drug resistance evolution: Insights from antimicrobial peptides and antibiotics, Proc. R. Soc. B Biol. Sci., 285, 20172687, https://doi.org/10.1098/rspb.2017.2687.
- Kintses, B., Méhi, O., Ari, E., Számel, M., Györkei, Á., Jangir, P. K., Nagy, I., Pál, F., Fekete, G., Tengölics, R., Nyerges, Á., Likó, I., Bálint, A., Molnár, T., Bálint, B., Vásárhelyi, B. M., Bustamante, M., Papp, B., and Pál, C. (2019) Phylogenetic barriers to horizontal transfer of antimicrobial peptide resistance genes in the human gut microbiota, Nat. Microbiol., 4, 447-458, https://doi.org/10.1038/s41564-018-0313-5.
- De los Santos, L., Beckman, R. L., DeBarro, C., Keener, J. E., Torres, M. D. T., de la Fuente-Nunez, C., Brodbelt, J. S., and Fleeman, R. M. (2024) Polyproline peptide targets Klebsiella pneumoniae polysaccharides to collapse biofilms, Cell Rep. Phys. Sci., 5, 101869, https://doi.org/10.1016/j.xcrp.2024.101869.
- Xuan, J., Feng, W., Wang, J., Wang, R., Zhang, B., Bo, L., Chen, Z. S., Yang, H., and Sun, L. (2023) Antimicrobial peptides for combating drug-resistant bacterial infections, Drug Resist. Updates, 68, 100954, https://doi.org/10.1016/j.drup.2023.100954.
- Canè, C., Tammaro, L., Duilio, A., and Di Somma, A. (2024) Investigation of the mechanism of action of AMPs from amphibians to identify bacterial protein targets for therapeutic applications, Antibiotics (Basel), 13, 1076, https://doi.org/10.3390/antibiotics13111076.
- Kumar, P., Kizhakkedathu, J. N., and Straus, S. K. (2018) Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo, Biomolecules, 8, 4, https://doi.org/10.3390/biom8010004.
- Eckert, R. (2011) Road to clinical efficacy: challenges and novel strategies for antimicrobial peptide development, Fut. Microbiol., 6, 635-651, https://doi.org/10.2217/FMB.11.27.
- Yeung, A. T. Y., Gellatly, S. L., and Hancock, R. E. W. (2011) Multifunctional cationic host defence peptides and their clinical applications, Cell. Mol. Life Sci., 68, 2161, https://doi.org/10.1007/S00018-011-0710-X.
- Chi, Y., Peng, Y., Zhang, S., Tang, S., Zhang, W., Dai, C., and Ji, S. (2024) A rapid in vivo toxicity assessment method for antimicrobial peptides, Toxics, 12, 387, https://doi.org/10.3390/TOXICS12060387.
- Sola, R., Mardirossian, M., Beckert, B., De Luna, L. S., Prickett, D., Tossi, A., Wilson, D. N., and Scocchi, M. (2020) Characterization of cetacean proline-rich antimicrobial peptides displaying activity against eskape pathogens, Int. J. Mol. Sci., 21, 7367, https://doi.org/10.3390/ijms21197367.
- Paulsen, V. S., Mardirossian, M., Blencke, H. M., Benincasa, M., Runti, G., Nepa, M., Haug, T., Stensvåg, K., and Scocchi, M. (2016) Inner membrane proteins YgdD and SbmA are required for the complete susceptibility of Escherichia coli to the proline-rich antimicrobial peptide arasin 1(1-25), Microbiology, 162, 601-609, https:// doi.org/10.1099/mic.0.000249.
- Stączek, S., Kunat-Budzyńska, M., Cytryńska, M., and Zdybicka-Barabas, A. (2024) Proline-rich antimicrobial peptides from invertebrates, Molecules, 29, 5864, https://doi.org/10.3390/molecules29245864.
- Raulf, K., Koller, T. O., Beckert, B., Lepak, A., Morici, M., Mardirossian, M., Scocchi, M., Bange, G., and Wilson, D. N. (2025) The structure of the Vibrio natriegens 70S ribosome in complex with the proline-rich antimicrobial peptide Bac5(1-17), Nucleic Acids Res., 53, gkaf324, https://doi.org/10.1093/NAR/GKAF324.
- Ciociola, T., Giovati, L., Giovannelli, A., Conti, S., Castagnola, M., and Vitali, A. (2018) The activity of a mammalian proline-rich peptide against Gram-negative bacteria, including drug-resistant strains, relies on a nonmembranolytic mode of action, Infect. Drug Resist., 11, 969, doi: 10.2147/IDR.S165179.
- Thakur, A., Sharma, A., Alajangi, H. K., Jaiswal, P. K., Lim, Y. B., Singh, G., and Barnwal, R. P. (2022) In pursuit of next-generation therapeutics: Antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications, Int. J. Biol. Macromol., 218, 135-156, https://doi.org/10.1016/J.IJBIOMAC.2022.07.103.
- Mahlapuu, M., Björn, C., and Ekblom, J. (2020) Antimicrobial peptides as therapeutic agents: opportunities and challenges, Crit. Rev. Biotechnol., 40, 978-992, https://doi.org/10.1080/07388551.2020.1796576.
- Graf, M., and Wilson, D. N. (2019) Intracellular antimicrobial peptides targeting the protein synthesis machinery, Adv. Exp. Med. Biol., 1117, 73-89, https://doi.org/10.1007/978-981-13-3588-4_6.
- Casteels, P., Ampe, C., Jacobs, F., Vaeck, M., and Tempst, P. (1989) Apidaecins: antibacterial peptides from honeybees, EMBO J., 8, 2387-2391, https://doi.org/10.1002/J.1460-2075.1989.TB08368.X.
- Huang, W., Baliga, C., Aleksandrova, E. V., Atkinson, G., Polikanov, Y. S., Vázquez-Laslop, N., and Mankin, A. S. (2024) Activity, structure, and diversity of type II proline-rich antimicrobial peptides from insects, EMBO Rep., 25, 5194-5211, https://doi.org/10.1038/s44319-024-00277-5.
- Panteleev, P. V., Pichkur, E. B., Kruglikov, R. N., Paleskava, A., Shulenina, O. V., Bolosov, I. A., Bogdanov, I. V., Safronova, V. N., Balandin, S. V., Marina, V. I., Kombarova, T. I., Korobova, O. V., Shamova, O. V., Myasnikov, A. G., Borzilov, A. I., Osterman, I. A., Sergiev, P. V., Bogdanov, A. A., Dontsova, O. A., Konevega, A. L., and Ovchinnikova, T. V. (2024) Rumicidins are a family of mammalian host-defense peptides plugging the 70S ribosome exit tunnel, Nat. Commun., 15, 8925, https://doi.org/10.1038/s41467-024-53309-y.
- Wang, G. (2014) Human antimicrobial peptides and proteins, Pharmaceuticals (Basel), 7, 545-594, https://doi.org/10.3390/ph7050545.
- Lauer, S. M., Reepmeyer, M., Berendes, O., Klepacki, D., Gasse, J., Gabrielli, S., Grubmüller, H., Bock, L. V., Krizsan, A., Nikolay, R., Spahn, C. M. T., and Hoffmann, R. (2024) Multimodal binding and inhibition of bacterial ribosomes by the antimicrobial peptides Api137 and Api88, Nat. Commun., 15, 3945, https://doi.org/10.1038/s41467-024-48027-4.
- Zanetti, M., Litteri, L., Gennaro, R., Horstmann, H., and Romeo, D. (1990) Bactenecins, defense polypeptides of bovine neutrophils, are generated from precursor molecules stored in the large granules, J. Cell Biol., 111, 1363-1371, https://doi.org/10.1083/JCB.111.4.1363.
- Zanetti, M., Litteri, L., Griffiths, G., Gennaro, R., and Romeo, D. (1991) Stimulus-induced maturation of probactenecins, precursors of neutrophil antimicrobial polypeptides, J. Immunol., 146, 4295-4300.
- Storici, P., and Zanetti, M. (1993) A novel cDNA sequence encoding a pig leukocyte antimicrobial peptide with a cathelin-like pro-sequence, Biochem. Biophys. Res. Commun., 196, 1363-1368, https://doi.org/10.1006/BBRC.1993.2403.
- Zanetti, M., Del Sal, G., Storici, P., Schneider, C., and Romeo, D. (1993) The cDNA of the neutrophil antibiotic Bac5 predicts a pro-sequence homologous to a cysteine proteinase inhibitor that is common to other neutrophil antibiotics, J. Biol. Chem., 268, 522-526, https://doi.org/10.1016/s0021-9258(18)54182-x.
- Bulet, P., Dimarcq, J. L., Hetru, C., Lagueux, M., Charlet, M., Hegy, G., Van Dorsselaer, A., and Hoffmann, J. A. (1993) A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution, J. Biol. Chem., 268, 14893-14897, https://doi.org/10.1016/s0021-9258(18)82417-6.
- Casteels-Josson, K., Capaci, T., Casteels, P., and Tempst, P. (1993) Apidaecin multipeptide precursor structure: a putative mechanism for amplification of the insect antibacterial response., EMBO J., 12, 1569-1578, https://doi.org/10.1002/J.1460-2075.1993.TB05801.X.
- Scocchi, M., Skerlavaj, B., Romeo, D., and Gennaro, R. (1992) Proteolytic cleavage by neutrophil elastase converts inactive storage proforms to antibacterial bactenecins, Eur. J. Biochem., 209, 589-595, https://doi.org/10.1111/J.1432-1033.1992.TB17324.X.
- Casteels, P., and Tempst, P. (1994) Apidaecin-type peptide antibiotics function through a nonporeforming mechanism involving stereospecificity, Biochem. Biophys. Res. Commun., 199, 339-345, https://doi.org/10.1006/bbrc.1994.1234.
- Scocchi, M., Tossi, A., and Gennaro, R. (2011) Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action, Cell. Mol. Life Sci., 68, 2317-2330, https://doi.org/10.1007/S00018-011-0721-7.
- Runti, G., del Lopez Ruiz, M. C., Stoilova, T., Hussain, R., Jennions, M., Choudhury, H. G., Benincasa, M., Gennaro, R., Beis, K., and Scocchi, M. (2013) Functional characterization of SbmA, a bacterial inner membrane transporter required for importing the antimicrobial peptide Bac7(1-35), J. Bacteriol., 195, 5343-5351, https://doi.org/10.1128/JB.00818-13.
- Ghilarov, D., Inaba-Inoue, S., Stepien, P., Qu, F., Michalczyk, E., Pakosz, Z., Nomura, N., Ogasawara, S., Walker, G. C., Rebuffat, S., Iwata, S., Heddle, J. G., and Beis, K. (2021) Molecular mechanism of SbmA, a promiscuous transporter exploited by antimicrobial peptides, Sci. Adv., 7, eabj5363, https://doi.org/10.1126/SCIADV.ABJ5363.
- Krizsan, A., Knappe, D., and Hoffmann, R. (2015) Influence of the yjiL-mdtM gene cluster on the antibacterial activity of proline-rich antimicrobial peptides overcoming Escherichia coli resistance induced by the missing SbmA transporter system, Antimicrob. Agents Chemother., 59, 5992, https://doi.org/10.1128/AAC.01307-15.
- Slotboom, D. J., Ettema, T. W., Nijland, M., and Thangaratnarajah, C. (2020) Bacterial multi-solute transporters, FEBS Lett., 594, 3898-3907, https://doi.org/10.1002/1873-3468.13912.
- Mardirossian, M., Sola, R., Beckert, B., Valencic, E., Collis, D. W. P., Borišek, J., Armas, F., Di Stasi, A., Buchmann, J., Syroegin, E. A., Polikanov, Y. S., Magistrato, A., Hilpert, K., Wilson, D. N., and Scocchi, M. (2020) Peptide inhibitors of bacterial protein synthesis with broad spectrum and SbmA-independent bactericidal activity against clinical pathogens, J. Med. Chem., 63, 9590-9602, https://doi.org/10.1021/acs.jmedchem.0c00665.
- Mardirossian, M., Pérébaskine, N., Benincasa, M., Gambato, S., Hofmann, S., Huter, P., Müller, C., Hilpert, K., Innis, C. A., Tossi, A., and Wilson, D. N. (2018) The dolphin proline-rich antimicrobial peptide Tur1A inhibits protein synthesis by targeting the bacterial ribosome, Cell Chem. Biol., 25, 530, https://doi.org/10.1016/J.CHEMBIOL.2018.02.004.
- Lai, P. K., Tresnak, D. T., and Hackel, B. J. (2019) Identification and elucidation of proline-rich antimicrobial peptides with enhanced potency and delivery, Biotechnol. Bioeng., 116, 2439-2450, https://doi.org/10.1002/bit.27092.
- Knappe, D., Zahn, M., Sauer, U., Schiffer, G., Sträter, N., and Hoffmann, R. (2011) Rational design of oncocin derivatives with superior protease stabilities and antibacterial activities based on the high-resolution structure of the oncocin-DnaK complex, ChemBioChem, 12, 874-876, https://doi.org/10.1002/CBIC.201000792.
- Zahn, M., Berthold, N., Kieslich, B., Knappe, D., Hoffmann, R., and Sträter, N. (2013) Structural studies on the forward and reverse binding modes of peptides to the chaperone DnaK, J. Mol. Biol., 425, 2463-2479, https://doi.org/10.1016/J.JMB.2013.03.041.
- Scocchi, M., Lüthy, C., Decarli, P., Mignogna, G., Christen, P., and Gennaro, R. (2009) The proline-rich antibacterial peptide Bac7 binds to and inhibits in vitro the molecular chaperone DnaK, Int. J. Peptide Res. Ther., 15, 147-155, https://doi.org/10.1007/s10989-009-9182-3.
- Krizsan, A., Volke, D., Weinert, S., Sträter, N., Knappe, D., and Hoffmann, R. (2014) Insect-derived proline-rich antimicrobial peptides kill bacteria by inhibiting bacterial protein translation at the 70S ribosome, Angewandte Chemie, 53, 12236-12239, https://doi.org/10.1002/anie.201407145.
- Wilson, D. N. (2014) Ribosome-targeting antibiotics and mechanisms of bacterial resistance, Nat. Rev. Microbiol., 12, 35-48, https://doi.org/10.1038/nrmicro3155.
- Polikanov, Y. S., Aleksashin, N. A., Beckert, B., and Wilson, D. N. (2018) The mechanisms of action of ribosome-targeting peptide antibiotics, Front. Mol. Biosci., 5, 48, https://doi.org/10.3389/fmolb.2018.00048.
- Mangano, K., Klepacki, D., Ohanmu, I., Baliga, C., Huang, W., Brakel, A., Krizsan, A., Polikanov, Y. S., Hoffmann, R., Vázquez-Laslop, N., and Mankin, A. S. (2023) Inhibition of translation termination by the antimicrobial peptide Drosocin, Nat. Chem. Biol., 19, 1082-1090, https://doi.org/10.1038/s41589-023-01300-x.
- Gagnon, M. G., Roy, R. N., Lomakin, I. B., Florin, T., Mankin, A. S., and Steitz, T. A. (2016) Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition, Nucleic Acids Res., 44, 2439-2450, https://doi.org/10.1093/nar/gkw018.
- Roy, R. N., Lomakin, I. B., Gagnon, M. G., and Steitz, T. A. (2015) The mechanism of inhibition of protein synthesis by the proline-rich peptide oncocin, Nat. Struct. Mol. Biol., 22, 466-469, https://doi.org/10.1038/nsmb.3031.
- Seefeldt, A. C., Nguyen, F., Antunes, S., Pérébaskine, N., Graf, M., Arenz, S., Inampudi, K. K., Douat, C., Guichard, G., Wilson, D. N., and Innis, C. A. (2015) The proline-rich antimicrobial peptide Onc112 inhibits translation by blocking and destabilizing the initiation complex, Nat. Struct. Mol. Biol., 22, 470-475, https://doi.org/10.1038/nsmb.3034.
- Seefeldt, A. C., Graf, M., Pérébaskine, N., Nguyen, F., Arenz, S., Mardirossian, M., Scocchi, M., Wilson, D. N., and Innis, C. A. (2016) Structure of the mammalian antimicrobial peptide Bac7(1-16) bound within the exit tunnel of a bacterial ribosome, Nucleic Acids Res., 44, 2429, https://doi.org/10.1093/NAR/GKV1545.
- Florin, T., Maracci, C., Graf, M., Karki, P., Klepacki, D., Berninghausen, O., Beckmann, R., VázquezLaslop, N., Wilson, D. N., Rodnina, M. V., and Mankin, A. S. (2017) An antimicrobial peptide that inhibits translation by trapping release factors on the ribosome, Nat. Struct. Mol. Biol., 24, 752-757, https://doi.org/10.1038/nsmb.3439.
- Niidome, T., Mihara, H., Oka, M., Hayashi, T., Saiki, T., Yoshida, K., and Aoyagi, H. (1998) Structure and property of model peptides of proline/arginine-rich region in bactenecin 5, Peptide Res., 51, 337-345, https://doi.org/10.1111/J.1399-3011.1998.TB01224.X.
- Ohgita, T., Takechi-Haraya, Y., Okada, K., Matsui, S., Takeuchi, M., Saito, C., Nishitsuji, K., Uchimura, K., Kawano, R., Hasegawa, K., Sakai-Kato, K., Akaji, K., Izutsu, K. I., and Saito, H. (2020) Enhancement of direct membrane penetration of arginine-rich peptides by polyproline II helix structure, Biochim. Biophys. Acta, 1862, 183403, https://doi.org/10.1016/j.bbamem.2020.183403.
- Shinnar, A. E., Butler, K. L., and Park, H. J. (2003) Cathelicidin family of antimicrobial peptides: Proteolytic processing and protease resistance, Bioorg. Chem., 31, 425-436, https://doi.org/10.1016/S0045-2068(03)00080-4.
- Guida, F., Benincasa, M., Zahariev, S., Scocchi, M., Berti, F., Gennaro, R., and Tossi, A. (2015) Effect of size and N-terminal residue characteristics on bacterial cell penetration and antibacterial activity of the proline-rich peptide Bac7, J. Med. Chem., 58, 1195-1204, https://doi.org/10.1021/JM501367P.
- Podda, E., Benincasa, M., Pacor, S., Micali, F., Mattiuzzo, M., Gennaro, R., and Scocchi, M. (2006) Dual mode of action of Bac7, a proline-rich antibacterial peptide, Biochim. Biophys. Acta, 1760, 1732-1740, https://doi.org/10.1016/j.bbagen.2006.09.006.
- Koch, P., Schmitt, S., Heynisch, A., Gumpinger, A., Wüthrich, I., Gysin, M., Shcherbakov, D., Hobbie, S. N., Panke, S., and Held, M. (2022) Optimization of the antimicrobial peptide Bac7 by deep mutational scanning, BMC Biol., 20, 114, https://doi.org/10.1186/s12915-022-01304-4.
- Benincasa, M., Scocchi, M., Podda, E., Skerlavaj, B., Dolzani, L., and Gennaro, R. (2004) Antimicrobial activity of Bac7 fragments against drug-resistant clinical isolates, Peptides, 25, 2055-2061, https://doi.org/10.1016/J.PEPTIDES.2004.08.004.
- Tokunaga, Y., Niidome, T., Hatakeyama, T., and Aoyagi, H. (2001) Antibacterial activity of bactenecin 5 fragments and their interaction with phospholipid membranes, J. Peptide Sci., 7, 297-304, https://doi.org/10.1002/PSC.317.
- Mardirossian, M., Barrière, Q., Timchenko, T., Müller, C., Pacor, S., Mergaert, P., Scocchi, M., and Wilsona, D. N. (2018) Fragments of the nonlytic proline-rich antimicrobial peptide Bac5 kill Escherichia coli cells by inhibiting protein synthesis, Antimicrob. Agents Chemother., 62, https://doi.org/10.1128/AAC.00534-18.
- Mardirossian, M., Sola, R., Degasperi, M., and Scocchi, M. (2019) Search for shorter portions of the proline-rich antimicrobial peptide fragment Bac5(1-25) that retain antimicrobial activity by blocking protein synthesis, ChemMedChem, 14, 343-348, https://doi.org/10.1002/cmdc.201800734.
- Graf, M., Huter, P., Maracci, C., Peterek, M., Rodnina, M. V., and Wilson, D. N. (2018) Visualization of translation termination intermediates trapped by the Apidaecin 137 peptide during RF3-mediated recycling of RF1, Nat.Commun., 9, 3053, https://doi.org/10.1038/s41467-018-05465-1.
- Baliga, C., Brown, T. J., Florin, T., Colon, S., Shah, V., Skowron, K. J., Kefi, A., Szal, T., Klepacki, D., Moore, T. W., Vázquez-Laslop, N., and Mankin, A. S. (2021) Charting the sequence-activity landscape of peptide inhibitors of translation termination, Proc. Natl. Acad. Sci. USA, 118, e2026465118, https://doi.org/10.1073/PNAS.2026465118.
- Koller, T. O., Morici, M., Berger, M., Safdari, H. A., Lele, D. S., Beckert, B., Kaur, K. J., and Wilson, D. N. (2023) Structural basis for translation inhibition by the glycosylated drosocin peptide, Nat. Chem. Biol., 19, 1072-1081, https://doi.org/10.1038/s41589-023-01293-7.
- Bulet, P., Hetru, C., Dimarcq, J. L., and Hoffmann, D. (1999) Antimicrobial peptides in insects, structure and function, Dev. Compar. Immunol., 23, 329-344, https://doi.org/10.1016/S0145-305X(99)00015-4.
- Gobbo, M., Biondi, L., Filira, F., Gennaro, R., Benincasa, M., Scolaro, B., and Rocchi, R. (2002) Antimicrobial peptides: synthesis and antibacterial activity of linear and cyclic drosocin and apidaecin 1b analogues, J. Med. Chem., 45, 4494-4504, https://doi.org/10.1021/jm020861d.
- Chan, K. H., Petrychenko, V., Mueller, C., Maracci, C., Holtkamp, W., Wilson, D. N., Fischer, N., and Rodnina, M. V. (2020) Mechanism of ribosome rescue by alternative ribosome-rescue factor B, Nat. Commun., 11, 4106, https://doi.org/10.1038/s41467-020-17853-7.
- Chadani, Y., Ono, K., Kutsukake, K., and Abo, T. (2011) Escherichia coli YaeJ protein mediates a novel ribosomerescue pathway distinct from SsrA- and ArfA-mediated pathways, Mol. Microbiol., 80, 772-785, https://doi.org/10.1111/j.1365-2958.2011.07607.x.
- Adamski, F. M., McCaughan, K. K., Jørgensen, F., Kurland, C. G., and Tate, W. P. (1994) The concentration of polypeptide chain release factors 1 and 2 at different growth rates of Escherichia coli, J. Mol. Biol., 238, 302-308, https://doi.org/10.1006/jmbi.1994.1293.
- Mangano, K., Florin, T., Shao, X., Klepacki, D., Chelysheva, I., Ignatova, Z., Gao, Y., Mankin, A. S., and VázquezLaslop, N. (2020) Genome-wide effects of the antimicrobial peptide apidaecin on translation termination in bacteria, ELife, 9, e62655, https://doi.org/10.7554/eLife.62655.
- Berthold, N., Czihal, P., Fritsche, S., Sauer, U., Schiffer, G., Knappe, D., Alber, G., and Hoffmann, R. (2013) Novel apidaecin 1b analogs with superior serum stabilities for treatment of infections by Gram-negative pathogens, Antimicrob. Agents Chemother., 57, 402-409, https://doi.org/10.1128/aac.01923-12.
- Ferbitz, L., Maier, T., Patzelt, H., Bukau, B., Deuerling, E., and Ban, N. (2004) Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins, Nature, 431, 590-596, https://doi.org/10.1038/nature02899.
- Buskiewicz, I., Deuerling, E., Gu, S. Q., Jöckel, J., Rodnina, M. V., Bukau, B., and Wintermeyer, W. (2004) Trigger factor binds to ribosome-signal-recognition particle (SRP) complexes and is excluded by binding of the SRP receptor, Proc. Natl. Acad. Sci. USA, 101, 7902-7906, https://doi.org/10.1073/pnas.0402231101.
- Wild, K., Halic, M., Sinning, I., and Beckmann, R. (2004) SRP meets the ribosome, Nat. Struct. Mol. Biol., 11, 1049-1053, https://doi.org/10.1038/nsmb853.
- Gu, S. Q., Peske, F., Wieden, H. J., Rodnina, M. V., and Wintermeyer, W. (2003) The signal recognition particle binds to protein L23 at the peptide exit of the Escherichia coli ribosome, RNA, 9, 566-573, https://doi.org/10.1261/RNA.2196403.
- Lauer, S. M., Gasse, J., Krizsan, A., Reepmeyer, M., Sprink, T., Nikolay, R., Spahn, C. M. T., and Hoffmann, R. (2025) The proline-rich antimicrobial peptide Api137 disrupts large ribosomal subunit assembly and induces misfolding, Nat. Commun., 16, 567, https://doi.org/10.1038/s41467-025-55836-8.
- Krizsan, A., Prahl, C., Goldbach, T., Knappe, D., and Hoffmann, R. (2015) Short proline-rich antimicrobial peptides inhibit either the bacterial 70S ribosome or the assembly of its large 50S subunit, ChemBioChem, 16, 2304-2308, https://doi.org/10.1002/CBIC.201500375.
- Moerke, N. J. (2009) Fluorescence polarization (FP) Assays for monitoring peptide-protein or nucleic acid-protein binding, Curr. Protocols Chem. Biol., 1, 1-15, https://doi.org/10.1002/9780470559277.ch090102.
- Kolano, L., Knappe, D., Volke, D., Sträter, N., and Hoffmann, R. (2020) Ribosomal target-binding sites of antimicrobial peptides Api137 and Onc112 are conserved among pathogens indicating new lead structures to develop novel broad-spectrum antibiotics, ChemBioChem, 21, 2628-2634, https://doi.org/10.1002/CBIC.202000109.
- Ludwig, T., Krizsan, A., Mohammed, G. K., and Hoffmann, R. (2022) Antimicrobial activity and 70S ribosome binding of apidaecin-derived Api805 with increased bacterial uptake rate, Antibiotics, 11, 430, https://doi.org/10.3390/antibiotics11040430.
- Noeske, J., Huang, J., Olivier, N. B., Giacobbe, R. A., Zambrowski, M., and Cate, J. H. D. (2014) Synergy of streptogramin antibiotics occurs independently of their effects on translation, Antimicrob. Agents Chemother., 58, 5269-5279, https://doi.org/10.1128/AAC.03389-14.
Дополнительные файлы


