Adaptive method for selecting basis functions in Kolmogorov–Arnold networks for magnetic resonance image enhancement
- Autores: Penkin M.A.1, Krylov A.S.1
-
Afiliações:
- Laboratory of Mathematical Image Processing Methods, Department of Computational Mathematics and Cybernetics, Moscow State University
- Edição: Nº 3 (2025)
- Páginas: 63-69
- Seção: COMPUTER GRAFICS AND VISUALIZATION
- URL: https://bakhtiniada.ru/0132-3474/article/view/305288
- DOI: https://doi.org/10.31857/S0132347425030061
- EDN: https://elibrary.ru/grjejw
- ID: 305288
Citar
Resumo
Sobre autores
M. Penkin
Laboratory of Mathematical Image Processing Methods, Department of Computational Mathematics and Cybernetics, Moscow State University
Email: penkin97@gmail.com
Moscow, 119991 Russia
A. Krylov
Laboratory of Mathematical Image Processing Methods, Department of Computational Mathematics and Cybernetics, Moscow State University
Email: kryl@cs.msu.ru
Moscow, 119991 Russia
Bibliografia
- Smith T. B. MRI Artifacts and Correction Strategies // Imaging in Medicine. 2010. V. 2. № 4. 445 p.
- Senyukova O., Zubov A. Full Anatomical Labeling of Magnetic Resonance Images of Human Brain by Registration with Multiple Atlases // Programming and Computer Software. 2016. V. 46. № 6. P. 356–360.
- Gray A., Pinsky M. Gibbs Phenomenon for Fourier-Bessel Series. Expos. Math. 11, 1993. 123 p.
- Penkin M., Krylov A., Khvostikov A. Hybrid Method for Gibbs-ringing Artifact Suppression in Magnetic Resonance Images // Programming and Computer Software. 2021. V. 47. № 3. P. 207–214.
- Penkin M., Khvostikov A., Krylov A. Automated Method for Optimum Scale Search when Using Trained Models for Histological Image Analysis // Programming and Computer Software. 2023. V. 49. № 3. P. 172–177.
- Zhang Y., Yu H. Convolutional Neural Network based Metal Artifact Reduction in X-Ray Computed Tomography // IEEE transactions on medical imaging. 2018. V. 37. № 6. P. 1370–1381.
- Penkin M., Krylov A. Medical Image Joint Deringing and Denoising using Fourier Neural Operator // Proceedings of the 2023 8th International Conference on Biomedical Imaging, Signal Processing. 2023. P. 40–45.
- Liu Z., Wang Y., Vaidya S., Ruehle F., Halverson J., Soljačić M., Hou T.Y., Tegmark M. KAN: Kolmogorov–Arnold Networks // arXiv preprint arXiv:2404.19756. 2024.
- Seydi S.T. Exploring the Potential of Polynomial Basis Functions in Kolmogorov–Arnold Networks: A Comparative Study of Different Groups of Polynomials // arXiv preprint arXiv:2406.02583. 2024.
- Vaswani A. Attention Is All You Need // Advances in Neural Information Processing Systems. 2017.
- Girosi F., Poggio T. Representation Properties of Networks: Kolmogorov’s Theorem is Irrelevant // Neural Computation. 1989. V. 1. № 4. P. 465–469.
- Somvanshi S., Javed S.A., Islam M.M., Pandit D., Das S. A Survey on Kolmogorov–Arnold Network // arXiv preprint arXiv:2411.06078. 2024.
- Li Z. Kolmogorov–Arnold Networks are Radial Basis Function Networks // arXiv preprint arXiv:2405.06721. 2024.
- Bozorgasl Z., Chen H. WAV–KAN: Wavelet Kolmogorov–Arnold Networks // arXiv preprint arXiv:2405.12832. 2024.
- Sidharth S.S., Keerthana A.R., Anas K.P. Chebyshev Polynomial-based Kolmogorov–Arnold Networks: An Efficient Architecture for Nonlinear Function Approximation // arXiv preprint arXiv:2405.07200. 2024.
- Abueidda D.W., Pantidis P., Mobasher M.E. DeepOKAN: Deep Operator Network based on Kolmogorov–Arnold Networks for Mechanics Problems // Computer Methods in Applied Mechanics and Engineering. 2025. V. 436. № 4. 117699 p.
- Li C., Liu X., Li W., Wang C., Liu H., Liu Y., Chen Z., Yuan Y. U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation // arXiv preprint arXiv:2406.02918. 2024.
- Penkin M., Krylov A. Kolmogorov–Arnold Networks as Deep Feature Extractors for MRI Reconstruction // Proceedings of the 2023 8th International Conference on Biomedical Imaging, Signal Processing. ACM. 2024. P. 40–45.
- Lei Ba J., Kiros J.R., Hinton G.E. Layer Normalization // ArXiv e-prints. 2016. 1607 p.
- Duta I.C., Liu L., Zhu F., Shao L. Improved Residual Networks for Image and Video Recognition // 2020 25th International Conference on Pattern Recognition (ICPR). 2021. P. 9415–9422.
- Kingma D.P., Ba J. Adam: A Method for Stochastic Optimization // arXiv preprint arXiv:1412.6980. 2014.
- Kellner E., Dhital B., Kiselev V.G., Reisert M. Gibbs-ringing artifact removal based on local subvoxel-shifts // Magnetic resonance in medicine. 2016. V. 76. № 5. P. 1574–1581.
- Boyd J.P. Chebyshev and Fourier Spectral Methods // Courier Corporation. 2001.
- Krylov A., Korchagin D. Fast Hermite Projection Method // International Conference Image Analysis and Recognition. Springer. 2006. P. 329–338.
Arquivos suplementares
