Mixed-carboxylate cadmium–europium compounds with monocarboxylic acid anions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A series of mixed-carboxylate EuCd compounds with 1,10-phenanthroline (phen) and anions of benzoic H(Bz), pentabenzoic H(Pfb), 3,5-dinitrobenzoic H(3,5-Nbz), and 3,5-di-tert-butylbenzoic H(Dtbbz) acids is synthesized: [Eu2Cd2(Phen)2(Рfb)5,4(Bz)4,6].2MeCN (I), [Eu2(H2O)2Cd2(Phen)2(3,5-Nbz)4,1(Bz)5,9] (II) and [EuCd2(EtOH)4(Dtbbz)6(Pfb)] (III). The variation of combinations of aromatic anions makes it possible to reveal the influence of diverse factors on the compositions and structures of new compounds. In the case of benzoate‒pentafluorobenzoate compound I and 3,5-dinitrobenzoate‒benzoate compound II, the aromatic substituents of the anions have nonintegral populations and occupy close positions in the structure of the complex. The combination of the more bulky 3,5-di-tert-butylbenzoate and pentafluorobenzoate anions in compound III results in the formation of a compound with integral populations of the positions of the anions. The synthesized compounds are characterized by XRD, IR spectroscopy, and C, H, N elemental analysis.

Texto integral

Acesso é fechado

Sobre autores

M. Shmelev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: shmelevma@yandex.ru
Rússia, Moscow

T. Shatrov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Moscow State University

Email: shmelevma@yandex.ru
Rússia, Moscow; Moscow

O. Zvereva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; National Research University Higher School of Economics

Email: shmelevma@yandex.ru
Rússia, Moscow; Moscow

A. Levina

Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences

Email: shmelevma@yandex.ru
Rússia, Moscow

J. Voronina

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: shmelevma@yandex.ru
Rússia, Moscow

A. Sidorov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: shmelevma@yandex.ru
Rússia, Moscow

I. Eremenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: shmelevma@yandex.ru
Rússia, Moscow

Bibliografia

  1. Han L.-J., Kong Y.-J., Sheng N., Jiang X.-L. // J. Fluor. Chem. 2014. V. 166. P. 122.
  2. Bünzli J.-C.G. // Chem. Rev. 2010. V. 110. № 5. P. 2729.
  3. Kotova O., Comby S., Lincheneau C., Gunnlaugsson T. // Chem. Sci. 2017. V. 8. P. 3419.
  4. Maouche R., Belaid S., Benmerad B. et al. // Inorg. Chim. Acta. 2020. V. 501. P. 119309.
  5. Belousov Y., Drozdov A.A., Taydakov I.V. et al. // Coord. Chem. Rev. 2021. V. 445. P. 214084.
  6. Bovkunova A.A., Bazhina E.S., Evstifeev I.S. et al. // Dalton Trans. 2021. V. 50. P. 12275.
  7. Bernot K., Daiguebonne C., Calvez G. et al. // Acc. Chem. Res. 2021. V. 54. № 2. P. 427.
  8. Costa I.F., Blois L., Paolini T.B. et al. // Coord. Chem. Rev. 2024. V. 502. P. 215590.
  9. Wang H., Li H., Yang L. et al. // Mol. Cryst. Liq. 2022. V. 736. P. 113.
  10. Silva A. I. S., Lima N.B.D., Simas A.M., Gonçalves S.M. C. // ACS Omega. 2017. V. 2(10). P. 6786.
  11. Brito-Santos G., Hernández-Rodríguez C., Gil-Hernández B. et al. // Dalton Trans. 2022. V. 51. P. 3146.
  12. Silva A.I.S., Santos V.F.C., Lima N.B.D. et al. // RSC Adv. 2016. V. 6. P. 90934.
  13. Melo L.L.L.S., Castro Jr. G.P., Gonçalves S.M. C. // Inorg. Chem. 2019. V. 58(5). P. 3265.
  14. Shmelev M.A., Polunin R.A., Gogoleva N.V. et al. // Molecules. 2021. V. 26. № 14. P. 4296.
  15. Шмелев М.А., Воронина Ю.К., Гоголева Н.В. и др. // Коорд. химия. 2022. Т. 48 № 4. С. 229 (Shmelev M.A., Voronina Yu. K., Gogoleva N.V. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 4. P. 224). https://doi.org/10.1134/S1070328422040042.
  16. Melnikov S.N., Evstifeev I.S., Nikolaveskii S.A. et al. // New J. Chem. 2021. V. 45. P. 13349.
  17. Shmelev M.A., Voronina J.K., Evtyukhin M.A. et al. // Inorganics. 2022. V. 10. № 11. P. 194.
  18. Voronina J.K., Yambulatov D.S., Chistyakov A.S. et al. // Crystals. 2023. V. 13. № 4. P. 678.
  19. Шмелев М.А., Чистяков А.С., Разгоняева Г.А. и др. // Журн. структур. химии. 2024. Т. 65. № 2. С. 122814 (Shmelev M.A., Chistyakov A.S., Razgonyaeva G.A. et al. // J. Struct. Chem. 2024. V. 65. P. 362).
  20. Kashyap C., Ullah S.S., Mazumder L.J., Kanti Guha A. // Comput. Theor. Chem. 2018. V. 1130. P. 134.
  21. Belousov Y., Kiskin M.A., Sidoruk A.V. et al. // Aust. J. Chem. 2022. V. 75. № 9. P. 572.
  22. Schwabedissen J., Trapp P.C., Stammler H.-G. et al. // Chem. Eur. J. 2019. V. 25. № 30. P. 7339.
  23. Varadwaj P.R., Varadwaj A., Marques H.M., Yamashita K. // Computation 2018. V. 6(4). P. 51.
  24. Coates G.W., Dunn A.R., Henling L. . // J. Am. Chem. Soc. 1998. V. 120. № 15. P. 3641.
  25. Brend’amour S., Gilmer J., Bolte M. et al. // Chem. — Eur. J. 2018. V. 24. № 63. P. 16910.
  26. Biradha K., Santra R. // Chem. Soc. Rev. 2013. V. 42. P. 950.
  27. Jassal A.K., Sran B.S., Suffren Y. et al. // Dalton Trans. 2018. V. 47. P. 4722.
  28. De Bettencourt-Dias A., Viswanathan S. // Dalton Trans. 2006. P. 4093.
  29. Tsaryuka V., Kudryashova V., Gawryszewska P. et al. // Photochem. Photobiol. 2012. V. 239. P. 37.
  30. Roy S., Bauza A., Frontera A. et al. // Inorg. Chim. Acta. 2016. V. 440. P. 38.
  31. Шмелев М.А., Гоголева Н.В., Иванов В.К. и др. // Коорд. химия. 2022. Т. 48(9). С. 515 (Shmelev M.A., Gogoleva N.V., Ivanov V.K. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 9. P. 539).
  32. Shmelev M.A., Gogoleva N.V., Sidorov A.A. et al. // ChemistrySelect. 2020. V. 5. № 28. P. 8475.
  33. Ларионов С.В., Кириченко В.Н., Расторгуев А.А. и др. // Коорд. химия. 1997. Т. 23. № 6. С. 432 (Larionov S.V., Kirichenko V.N., Rastorguev A.A. et al. // Russ. J. Coord. Chem. 1997. V. 23(6). P. 465).
  34. Jassal A.K., Sharma S., Hundal G., Hundal M.S. // Cryst. Growth Des. 2015. V. 15. № 1, P. 79.
  35. Moreno-Gómez L., Sánchez-Férez F., Calvet T. et al. // Inorg. Chim. Acta. 2020. V. 506. P. 119561.
  36. SMART (control) and SAINT (integration). Software. Version 5.0. Madison (WI, USA): Bruker AXS Inc., 1997.
  37. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  38. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
  39. Casanova D., Llunell M., Alemany P., Alvarez S. et al. // Chem. Eur. J. 2005. V. 11. P. 1479.
  40. Shmelev M.A., Chistyakov A.S., Razgonyaeva G.A. et al. // Crystals. 2022. V. 12. № 4. P. 508.
  41. Shmelev M.A., Kuznetsova G.N., Gogoleva N.V. et al. // Russ. Chem. Bull. 2021. V. 70. P. 830 (Шмелев М А., Кузнецова Г.Н., Гоголева Н.В. и др. // Изв. АН. Сер. хим. 2021. Т. 70. С. 830). https://doi.org/10.1007/s11172-021-3156-9
  42. Seera R., Cherukuvada S., Guru Row T.N. // Cryst. Growth Des. 2021. V. 21. № 8. P. 4607.
  43. Reddy L.S., Bhatt P.M., Banerjee R. et al. // Chem. Asian J. 2007. V. 2. P. 505.
  44. Jetti R.K.–R., Boese R., Thallapally P.K., Desiraju G.R. // Cryst.Growth Des. 2003. V. 3. P. 1033.
  45. Sharada D., Saha A., Saha B.K. // New J. Chem. 2019. V. 43. P. 7562.
  46. Lynch D.E., Smith G., Byriel K.A., Kennard C.H.L. // Aust. J. Chem. 1994. V. 47. P. 1789.
  47. Jin S., Wang D. // J. Mol. Struct. 2013. V. 1037. P. 242.
  48. Jones C.L., Skelton J.M., Parker S.C. et al. // CrystEngComm. 2019. V. 21. P. 1626.
  49. Arora K.K., Pedireddi V.R. // Tetrahedron. 2004. V. 60. P. 919.
  50. Shmelev M.A., Kiskin M.A, Voronina J.K. et al. // Materials. 2020. V. 13. № 24, № 5689.
  51. Shmelev M. A., Gogoleva N.V., Sidorov A.A. et al. // Inorg. Chim. Acta. 2021. V. 515. P. 120050.
  52. Sidorov A.A., Gogoleva N.V., Bazhina E.S. et al. // Pure Appl. Chem. 2020. V. 92. № 7. P. 1093.
  53. Shmelev M.A., Voronina Yu.K., Gogoleva N.V. et al. // Russ. Chem. Bull. 2020. V. 69. P. 1544 (Шмелев М.А., Воронина Ю.К., Гоголева Н.В. и др. // Изв. АН. Сер. хим. 2020. Т. 69, С. 1544).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Sch. 1. Synthesis of compounds I-III.

Baixar (354KB)
3. Fig. 1. Structure of complex I. Hydrogen atoms and solvated molecules are not shown.

Baixar (510KB)
4. Fig. 2. Structure of complex II. Hydrogen atoms are not shown.

Baixar (514KB)
5. Fig. 3. Structure of complex III. Tret-butyl substituents and hydrogen atoms are not shown.

Baixar (270KB)

Declaração de direitos autorais © Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».