Metalation of ketazines. Interaction of tetralone azine with methyLLithium
- Authors: Sushev V.V.1, Zolotareva N.V.1, Grishin M.D.1, Rumyantcev R.V.1, Fukin G.K.1, Kornev A.N.1
-
Affiliations:
- Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
- Issue: Vol 51, No 8 (2025)
- Pages: 529-538
- Section: Articles
- URL: https://bakhtiniada.ru/0132-344X/article/view/306956
- DOI: https://doi.org/10.31857/S0132344X25080055
- EDN: https://elibrary.ru/lfjoah
- ID: 306956
Cite item
Abstract
The reaction of tetralone azine with methyllithium in tetrahydrofuran results in the release of 1 mol of CH4 and the formation of the lithium salt of enamine I, which crystallizes as a dimer in which the lithium atoms are bridges between the sp3- and sp2-nitrogen atoms of the two ligands and form a six-membered LiNNLiNN metallacycle (CCDC No. 2426300). Analysis of the electron density topology using the non-covalent interaction index and the source function allowed us to determine that each lithium atom in complex I interacts with the NNCC fragment of the ligand. The study of the charge distribution in the ligand anion demonstrated that the C(2) position is the most favorable for directing the attack of various electrophilic substrates. The DFT method showed that the process of phosphorylation of the deprotonated azine tetralone PCl3 is thermodynamically more favorable by 12.6 kcal/mol than the product of phosphorylation at the nitrogen atom.
About the authors
V. V. Sushev
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
Email: akornev@iomc.ras.ru
Russian Federation, Nizhny Novgorod, Russia
N. V. Zolotareva
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
Email: akornev@iomc.ras.ru
Russian Federation, Nizhny Novgorod, Russia
M. D. Grishin
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
Email: akornev@iomc.ras.ru
Russian Federation, Nizhny Novgorod
R. V. Rumyantcev
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
Email: akornev@iomc.ras.ru
Russian Federation, Nizhny Novgorod
G. K. Fukin
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
Email: akornev@iomc.ras.ru
Russian Federation, Nizhny Novgorod
A. N. Kornev
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: akornev@iomc.ras.ru
Russian Federation, Nizhny Novgorod
References
- Tamaru Y., Harada T., Yoshida Z. // Tetrahedron Let., 1977. V. 49. P. 4323.
- Tamaru Y., Harada T., Yoshida Z. // Chem. Let. 1978. P 263.
- Henoch F.E., Hampton K.G., Hauser C.R. // J. Am. Chem. Soc. 1969. V. 91(3). P. 676.
- Barluenga J., Iglesias M J., Gotor V. // J. Chem. Soc., Chem. Comm. 1987. V. 8. P. 582.
- Xia Y., Zhang X., Liu L. et al. // Ind. Eng. Chem. Res. 2020. V. 59. P. 18748.
- Safari J., Gandomi-Ravandi S., Ghotbinejad M. // J. Saudi Chem. Soc., 2016. V. 20(1). P. 20.
- Tamaru Y., Harada T., Yoshida Z. // J. Org. Chem. 1978. V. 43. P. 3370.
- Groh T., Elter G., Noltemeyer M. et al. // Main Group Met. Chem. 2000. V. 23. P. 709.
- Groh, T., Elter, G., Noltemeyer et al. // Organometallics. 2000. V. 19, P. 2477.
- Safari J., Gandomi-Ravandi S. // RSC Adv. 2014. V. 4. P. 46224.
- Kornev A.N., Panova Y.S., Sushev V.V. et al. // Inorg. Chem. 2019. V. 58. P. 16144.
- Kornev A.N., Panova Y.S., Sushev V.V. // Phosphorus, Sulfur Silicon Relat. Elem. 2020. V. 195. P. 905.
- Panova Yu., Khristolyubova A., Zolotareva N. et al. // Dalton Trans. 2021. V. 50. P. 5890.
- Kornev A.N., Sushev V.V., Panova Y.S. et al. // Inorg. Chem. 2014. V. 53. P. 3243.
- Han W., Zhang G., Li G. et al. // Org. Lett. 2014. V. 16. P. 3532.
- Rigaku Oxford Diffraction. (2022). CrysAlis Pro software system, version 1.171.42.68a, Rigaku Corporation, Wroclaw, Poland.
- Sheldrick G.M. //Acta Crystallogr. A. 2015. V. 71. P. 3.
- Sheldrick G.M. //Acta Crystallogr. C. 2015. V. 71. P. 3.
- Becke A.D. // J. Chem. Phys. 1993. V. 98. 5648.
- Lee C., Yang W., Parr R.G. // Phys. Rev. 1988. V. 37. P. 785.
- Stephens P.J., Devlin F.J., Chabalowski C.F. et al. // J. Phys. Chem. 1994. V. 98. P. 11623.
- Pritchard B. P., Altarawy D., Didier B. et al. // J. Chem. Inf. Model. 2019. V. 59. 4814.
- Feller D. // J. Comput. Chem. 1996. V. 17. P. 1571.
- Schuchardt K. L., Didier B. T., Elsethagen T. et al. // J. Chem. Inf. Model. 2007. V. 47. 1045.
- Dill J.D., Pople J. A. // J. Chem. Phys. 1975. V. 62. P. 2921.
- Ditchfield R., Hehre W.J., Pople J. // J. Chem. Phys. 1971. V. 54. 724.
- Frisch M.J., Trucks G.W., Schlegel H. B. et al. // Gaussian 09 Revision E.01, Gaussian, Inc., Wallingford, CT, 2009.
- Hariharan P.C., Pople J.A. // Theor. Chim. Acta. 1973. V. 28. P. 213.
- Hehre W.J., Ditchfield R., Pople J.A. // J. Chem. Phys. 1972. V. 56. P. 2257.
- Dovesi R., Erba A., Orlando R. et al. // WIREs Comput. Mol. Sci. 2018, V. 8. P. e1360.
- Momma K., Izumi F. // J. Appl. Crystallogr. 2011. V. 44. P. 1272.
- Jelsch C., Guillot B., Lagoutte A. et al. // J. Appl. Crystallogr. 2005. V. 38. P. 38.
- Bader R.F.W. // Atoms in Molecules: A Quantum Theory, Oxford: Oxford Univ., 1990.
- Cortes-Guzman F., Bader R.F.W. // Coord. Chem. Rev. 2005. V. 249. P. 662662.
- Keith T.A. AIMAll 2017. Version 17.11.14. Overland Park, KS, USA: TK Gristmill Software, 2017.
- Stash A.I., Tsirelson V.G. // J. Appl. Cryst. 2014. V. 47. P. 2086.
- Dilworth J.R. // Coord. Chem. Rev. 1976. V. 21. P. 29.
- Michel R., Herbst-Irmer R., Stalke D. // Organometallics. 2011. V. 30. P. 4379.
- Collum D.B., Kahne D., Gut S.A. et al. // J. Am. Chem. Soc. 1984. V. 106. P. 4865.
- Kohrt S., Dachwitz S., Daniliuc C.G. et al. // Dalton Trans. 2015. V. 44. P. 21032.
- Kunz K., Pflug J., Bertuleit A. et al. // Organometallics. 2000. V. 19. P. 4208.
- Batsanov S.S. // Inorg. Mater., 2001, V. 37. P. 871.
- Shannon R.D. // Acta Crystallogr. 1976, V. A32. P. 751.
- Bader R.F.W. Atoms in Molecules – A Quantum Theory. Oxford: Oxford Univ. Press, 1990. 458 p.
- Farrugia L.J., Evans C., Lentz D. et al. // J. Am. Chem. Soc. 2009. V. 131. P. 1251.
- Smol’yakov A.F., Dolgushin F.M., Antipin M.Yu. // Russ. Chem. Bull. 2012. V. 61. P. 2204.
- Lugan N., Fernandez I., Brousses R. et al. // Dalton Trans. 2013. V. 42. P. 898.
- Smol’yakov A.F., Dolgushin F.M., Ginzburg A.G. et al. // J. Mol. Struct. 2012. V. 1014. P. 81.
- Kaminski R., Herbaczynska B., Srebro M. et al. // Phys. Chem. Chem. Phys. 2011. V. 13. P. 10280.
- Makal A.M., Plazuk D., Zakrzewski J. et al. // Inorg. Chem. 2010. V. 49. V. 4046.
- Scheins S., Messerschmidt M., Gembicky M. et al. // J. Am. Chem. Soc. 2009. V. 131. P. 6154.
- Hey J., Andrada D.M., Michel R. et al. // Angew. Chem. Int. Ed. 2013. V. 52. P. 10365.
- Bader R.W.F., Gatti C. // Chem. Phys. Lett. 1998. V. 287. P. 233.
- Farrugia L.J., Macchi P. // J. Phys. Chem. A. 2009. V. 113. P. 10058.
- Gatti C. // Electron Density and Chemical Bonding II: Theoretical Charge Density Studies / Ed. Stalke D. Springer, Berlin, Heidelberg, 2012. P.193.
- Johnson E.R., Keinan S., Mori–Sanchez P. et al. // J. Am. Chem. Soc. 2010. V. 132. P. 6498.
- Contreras-Garcia J., Johnson E.R., Keinan S. et al. // J. Chem. Theory Comput. 2011, V. 7. P. 625.
- Contreras-Garcia J., Yang W., Johnson E.R. // J. Phys. Chem. A. 2011. V. 115. P. 12983.
- Fukin G.K., Cherkasov A.V., Baranov E.V. et al. // ChemistrySelect. 2019. V. 4. P. 1.
- Fukin G.K., Baranov E.V., Rumyantcev R.V. et al. // Struct. Chem. 2020. V. 31. P. 1841.
- Fukin G.K., Cherkasov A.V., Rumyantcev R.V. et al. // Mendeleev Commun. 2019. V. 29. P. 346.
Supplementary files
