APPLICATION OF EDDY CURRENT METHOD OF CONTROL FOR INDICATION OF FATIGUE CHANGES IN AUSTENITIC STEELS WITH MARTENSITE FORMATION

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The results of cyclic tests of 08X18N10T structural steel are presented. The tests were carried out using the accelerated Location method. The experimental data obtained showed that cyclic deformation of austenitic steel leads to the formation of deformation martensite, as indicated by the results of X-ray phase examination of the sample. The study of the microstructure of steel also indicates structural and phase transformations occurring in steel. The eddy current signal was measured on the test sample before and after the tests. Changes in the phase and amplitude of the eddy current signal occurring after the tests indicate the possibility of using this method to determine the formation of deformation martensite in austenitic steel

Авторлар туралы

Konstantin Kuskov

Industrial University of Tyumen

Email: kuskovkv@tyuiu.ru
ORCID iD: 0000-0002-0698-8545
SPIN-код: 2137-8170
Scopus Author ID: 57192048601
ResearcherId: o-1220-2016

Candidate of Technical Sciences, Leading Researcher at the Laboratory of Vibration and Hydrodynamic Modeling, Associate Professor of the Department of Materials Science and Technology of Structural Materials

Ресей, 625000 Tyumen, Volodarsky Street, 38

Roman Sokolov

Industrial University of Tyumen

Email: falcon.rs@mail.ru
ORCID iD: 0000-0001-5867-8170
SPIN-код: 4151-4795
Scopus Author ID: 57200378938
ResearcherId: ABF-4066-2020

Ресей, 625000 Tyumen, Volodarsky Street, 38

Kamil Muratov

Industrial University of Tyumen

Хат алмасуға жауапты Автор.
Email: muratows@mail.ru
ORCID iD: 0000-0002-8079-2022
SPIN-код: 1454-8016
Scopus Author ID: 56487775000
ResearcherId: Q-6589-2016

Кандидат технических наук, доцент, доцент кафедры физики и приборостроения

Ресей, 625000 Tyumen, Volodarsky Street, 38

Әдебиет тізімі

  1. Makarov A.V., Gorkunov E.S., Savray R.A., Kolobylin Yu.M., Kogan L.Kh., Pozdeeva N.A., Malygina I.Yu. Magnitnyj i vihretokovyj kontrol’ zakalennoj konstrukcionnoj stali, podvergnutoj kombinirovannym deformacionno-termicheskim obrabotkam (Magnetic and eddy current control of hardened structural steel subjected to combined deformation and heat treatments) // Defectoskopiya. 2012. No. 12. P. 3—18.
  2. Bakunov A.S., Muzhickij V.F., Shubochkin S.E. Sovremennoe reshenie zadach vihretokovoj strukturoskopii (Modern solution of eddy current structuroscopy problems) // Defectoskopiya. 2004. No. 5. P. 79—84.
  3. Savray R.A., Kogan L.H., Makarov A.V., Soboleva N.N. Osobennosti vihretokovogo kontrolya ustalostnoj degradacii naplavlennogo lazerom kobal’thromonikelevogo pokrytiya pri kontaktnom nagruzhenii (Features of eddy current control of fatigue degradation of laser clad cobalt-chromium-nickel coating under contact loading) // Letters on Materials. 2020. V. 10. No. 3 (39). P. 315—321. doi: 10.22226/2410-3535-2020-3-315-321
  4. Savrai R.A., Kogan L.Kh. Eddy Current Testing of Fatigue Degradation of Metastable Austenitic Steel under Gigacycle Contact-Fatigue Loading // Russian Journal of Nondestructive Testing. 2021. V. 57. No. 5. P. 393—400.
  5. Savrai R.A. Vliyanie uprochnyayushchej frikcionnoj obrabotki na osobennosti vihretokovogo kontrolya ustalostnoj degradacii metastabil’noj austenitnoj stali pri gigaciklovom kontaktno-ustalostnom nagruzhenii (Influence of strengthening friction treatment on features of eddy current control of fatigue degradation of metastable austenitic steel under gigacyclic contact-fatigue loading) // Defectoskopiya. 2022. No. 8. P. 52—61. doi: 10.31857/S013030822208005X
  6. Silva V.M.A., Camerini C.G., Pardal J.M., de Blás J.C.G., Pereira G.R. Eddy current characterization of cold-worked AISI 321 stainless steel // Journal of Materials Research and Technology. 2018. V. 7. Is. 3. P. 395—401.
  7. Liu K., Zhao Z., Zhang Z. Eddy current assessment of the cold rolled deformation behavior of AISI 321 stainless steel // Journal of Materials Engineering and Performance. 2012. V. 21. Is. 8. P. 1772—1776.
  8. Khan S.H., Ali F., Nusair Khan A., Iqbal M.A. Eddy current detection of changes in stainless steel after cold reduction // Computational Materials Science. 2008. V. 43. Is. 4. P. 623—628.
  9. De Backer F., Schoss V., Maussner G. Investigations on the evaluation of the residual fatigue lifetime in austenitic stainless steels // Nuclear Engineering and Design. 2001. V. 206. Is. 2—3. P. 201—219.
  10. Mishakin V., Gonchar A., Kurashkin K., Kachanov M. Prediction of fatigue life of metastable austenitic steel by a combination of acoustic and eddy current data // International Journal of Fatigue. 2020. V. 141. 105846. P. 1—6.
  11. Corte J.S., Rebello J.M.A., Areiza M.C.L., Tavares S.S.M., Araujo M.D. Failure analysis of AISI 321 tubes of heat exchanger // Engineering Failure Analysis. 2015. V. 56. P. 170—176.
  12. Wilam M., Čermáková I. Integrity of VVER steam generator tubes // Theoretical and Applied Fracture Mechanics. 1995. V. 23. Is. 2. P. 151—153.
  13. Kolmykov V.I., Romanenko D.N., Nefediev S.P., Dema R.R., Kharchenko M.V., Romanenko E.F., Kononov V.N., Zambrzhitskaya E.S., Nikitenko O.A. Izuchenie ustalostnoj prochnosti ferromagnitnyh materialov nerazrushayushchim ekspress-metodom (Study of fatigue strength of ferromagnetic materials by non-destructive express method) // Zavodskaya laboratoria. Diagnostics of materials. 2017. V. 83. No. 11. P. 47—51. doi: 10.26896/1028-6861-2017-83-11-47-51
  14. STP 26.260.484-2004. Termicheskaya obrabotka korrozionnostojkih stalej i splavov na zhelezonikelevoj osnove v himicheskom mashinostroenii (Heat treatment of corrosion-resistant steels and iron-nickel-based alloys in chemical engineering). Text: electronic. Approved 13.05.2004. P. 33.
  15. Kuskov K.V., Syzrantseva K.V. Sravnenie ustalostnyh harakteristik obrazcov razlichnoj geometrii iz stali 09G2S (Comparison of fatigue characteristics of specimens of different geometry made of 09G2S steel) // Bulletin of Perm National Research Polytechnic University. Mechanical Engineering, Material Science. 2024. V. 26. No. 2. P. 24—30. doi: 10.15593/2224-9877/2024.2.03
  16. RD 50-686-89. Metodicheskie ukazaniya. Nadyozhnost’ v tekhnike. Metody uskorennyh ispytanij na ustalost’ dlya ocenki predelov vynoslivosti materialov, elementov mashin i konstrukcij (Methodological guidelines. Reliability in technology. Methods of accelerated fatigue tests for assessment of endurance limits of materials, machine elements and structures). Date of introduction: 01.01.90. Moscow: Standards Publishing House, 1990. P. 27.
  17. Lyalyakin V.P. Uskorennyj metod Lokati dlya ispytaniya detalej mashin na soprotivlenie ustalosti (Accelerated method of Locati for fatigue resistance testing of machine parts) // Vestnik Mashinostroeniya. 2021. No. 6. P. 28—29. doi: 10.36652/0042-4633-2021-6-28-30
  18. Kuskov K.V. The influence evaluation of the roughness direction on fatigue resistance // Procedia Structural Integrity. 2024. V. 65. P. 133–138.
  19. Korh M.K., Rigmant M.B., Korh Y.V., Nichipuruk A.P. Metody i pribory kontrolya fazovogo sostava, elektricheskih i magnitnyh svojstv hromonikelevyh stalej (Methods and devices for control of phase composition, electrical and magnetic properties of chromium-nickel steels) // Bulletin of M.T. Kalashnikov IzhGTU. 2018. V. 21. No. 4. P. 4—12. doi: 10.22213/2413-1172-2018-4-4-12
  20. Goruleva L.S., Zadvorkin S.S.M., Mushnikov A.N. Vliyanie plasticheskoj deformacii na fazovyj sostav i elektromagnitnye harakteristiki austenitnoj stali marki 321N (08H18N10T) (Effect of Plastic Deformation on the Phase Composition and Electromagnetic Characteristics of 321N (08X18N10T) Austenitic Steel) // Diagnostics, Resource and Mechanics of Materials and Structures. 2022. No. 6. P. 95—106. doi: 10.17804/2410-9908.2022.6.095-106
  21. Klyuev V.V. Nondestructive testing in 2 books. Т. 1: Tightness control. Т. 2: Eddy current control. Reference book in 8 volumes. Moscow: Mashinostroenie, 2003. P. 688.
  22. Dyakin V.V., Sandovsky V.A. Theory and calculation of clamp-on eddy current transducers (Theory and calculation of overhead eddy current transducers). Moscow: Nauka, 1981. P. 136.
  23. Talonen J., Aspegren P., Hänninen H. Comparison of different methods for measuring strain induced α-martensite content in austenitic steels // Materials Science and Technology. 2004. V. 20. URL: doi: 10.1179/026708304X4367
  24. Rigmant M.B., Korh M.K., Davydov D.I., Shishkin D.A., Korkh Yu.V., Nichipuruk A.P., Kazantseva N.V. Metody vyyavleniya martensita deformacii v austenitno-ferritnyh stalyah (Methods of strain martensite detection in austenitic-ferritic steels) // Defectoskopiya. 2015. No. 11. P. 28—42.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».