ПРИМЕНЕНИЕ ВИХРЕТОКОВОГО КОНТРОЛЯ ДЛЯ ИНДИКАЦИИ УСТАЛОСТНЫХ ИЗМЕНЕНИЙ В АУСТЕНИТНЫХ СТАЛЯХ С ОБРАЗОВАНИЕМ МАРТЕНСИТА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Представлены результаты циклических испытаний конструкционной стали 08Х18Н10Т. Испытания проводились по ускоренной методике Локати. Полученные экспериментальные данные показали, что циклическая деформация аустенитной стали приводит к образованию мартенсита деформации, о чем говорят результаты рентгенофазового исследования образца. Изучение микроструктуры стали также говорят о структурно-фазовых превращениях, происходящих в стали. На исследуемом образце до и после испытаний проводились измерения вихретокового сигнала. Изменения фазы и амплитуды вихретокового сигнала, происходящие после проведения испытаний, говорят о возможности применения данного метода для определения образования мартенсита деформации в аустенитной стали

Об авторах

Константин Викторович Кусков

Тюменский индустриальный университет

Email: kuskovkv@tyuiu.ru
ORCID iD: 0000-0002-0698-8545
SPIN-код: 2137-8170
Scopus Author ID: 57192048601
ResearcherId: o-1220-2016

кандидат технических наук, ведущий научный сотрудник лаборатории вибрационного и гидродинамического моделирования, доцент кафедры материаловедения и технологии конструкционных материалов

Россия, 625000 Тюмень, ул. Володарского, 38

Роман Александрович Соколов

Тюменский индустриальный университет

Email: falcon.rs@mail.ru
ORCID iD: 0000-0001-5867-8170
SPIN-код: 4151-4795
Scopus Author ID: 57200378938
ResearcherId: ABF-4066-2020

Кандидат технических наук, доцент кафедры физики и приборостроения

Россия, 625000 Тюмень, ул. Володарского, 38

Камиль Рахимчанович Муратов

Тюменский индустриальный университет

Автор, ответственный за переписку.
Email: muratows@mail.ru
ORCID iD: 0000-0002-8079-2022
SPIN-код: 1454-8016
Scopus Author ID: 56487775000
ResearcherId: Q-6589-2016

Кандидат технических наук, доцент, доцент кафедры физики и приборостроения

Россия, 625000 Тюмень, ул. Володарского, 38

Список литературы

  1. Макаров А.В., Горкунов Э.С., Саврай Р.А., Колобылин Ю.М., Коган Л.Х., Поздеева Н.А., Малыгина И.Ю. Магнитный и вихретоковый контроль закаленной конструкционной стали, подвергнутой комбинированным деформационно-термическим обработкам // Дефектоскопия. 2012. № 12. С. 3—18.
  2. Бакунов А.С., Мужицкий В.Ф., Шубочкин С.Е. Современное решение задач вихретоковой структуроскопии // Дефектоскопия. 2004. № 5. С. 79—84.
  3. Саврай Р.А., Коган Л.Х., Макаров А.В., Соболева Н.Н. Особенности вихретокового контроля усталостной деградации наплавленного лазером кобальтхромоникелевого покрытия при контактном нагружении // Письма о материалах. 2020. Т. 10. № 3 (39). С. 315—321. doi: 10.22226/2410-3535-2020-3-315-321
  4. Savrai R.A., Kogan L.Kh. Eddy Current Testing of Fatigue Degradation of Metastable Austenitic Steel under Gigacycle Contact-Fatigue Loading // Russian Journal of Nondestructive Testing. 2021. V. 57. No. 5. P. 393—400.
  5. Саврай Р.А. Влияние упрочняющей фрикционной обработки на особенности вихретокового контроля усталостной деградации метастабильной аустенитной стали при гигацикловом контактно-усталостном нагружении // Дефектоскопия. 2022. № 8. С. 52—61. doi: 10.31857/S013030822208005X
  6. Silva V.M.A., Camerini C.G., Pardal J.M., de Blás J.C.G., Pereira G.R. Eddy current characterization of cold-worked AISI 321 stainless steel // Journal of Materials Research and Technology. 2018. V. 7. Is. 3. P. 395—401.
  7. Liu K., Zhao Z., Zhang Z. Eddy current assessment of the cold rolled deformation behavior of AISI 321 stainless steel // Journal of Materials Engineering and Performance. 2012. V. 21. Is. 8. P. 1772—1776.
  8. Khan S.H., Ali F., Nusair Khan A., Iqbal M.A. Eddy current detection of changes in stainless steel after cold reduction // Computational Materials Science. 2008. V. 43. Is. 4. P. 623—628.
  9. De Backer F., Schoss V., Maussner G. Investigations on the evaluation of the residual fatigue lifetime in austenitic stainless steels // Nuclear Engineering and Design. 2001. V. 206. Is. 2—3. P. 201—219.
  10. Mishakin V., Gonchar A., Kurashkin K., Kachanov M. Prediction of fatigue life of metastable austenitic steel by a combination of acoustic and eddy current data // International Journal of Fatigue. 2020. V. 141. 105846. P. 1—6.
  11. Corte J.S., Rebello J.M.A., Areiza M.C.L., Tavares S.S.M., Araujo M.D. Failure analysis of AISI 321 tubes of heat exchanger // Engineering Failure Analysis. 2015. V. 56. P. 170—176.
  12. Wilam M., Čermáková I. Integrity of VVER steam generator tubes // Theoretical and Applied Fracture Mechanics. 1995. V. 23. Is. 2. P. 151—153.
  13. Колмыков В.И., Романенко Д.Н., Нефедьев С.П., Дема Р.Р., Харченко М.В., Романенко Е.Ф., Кононов В.Н., Замбржицкая Е.С., Никитенко О.А. Изучение усталостной прочности ферромагнитных материалов неразрушающим экспресс-методом // Заводская лаборатория. Диагностика материалов. 2017. Т. 83. № 11. С. 47—51. doi: 10.26896/1028-6861-2017-83-11-47-51
  14. СТП 26.260.484-2004. Термическая обработка коррозионностойких сталей и сплавов на железоникелевой основе в химическом машиностроении / Текст: электронный. Утверждено 13.05.2004. 33 с.
  15. Кусков К.В., Сызранцева К.В. Сравнение усталостных характеристик образцов различной геометрии из стали 09Г2С // Вестник Пермского национального исследовательского политехнического университета. Машиностроение, материаловедение. 2024. Т. 26. № 2. С. 24—30. doi: 10.15593/2224-9877/2024.2.03
  16. Методические указания. Надежность в технике. Методы ускоренных испытаний на усталость для оценки пределов выносливости материалов, элементов машин и конструкций. РД 50-686-89. Дата введения: 01.01.90. М.: Издательство стандартов, 1990. 27 с.
  17. Лялякин В.П. Ускоренный метод Локати для испытания деталей машин на сопротивление усталости // Вестник машиностроения. 2021. № 6. С. 28—29. doi: 10.36652/0042-4633-2021-6-28-30
  18. Kuskov K.V. The influence evaluation of the roughness direction on fatigue resistance / K.V. Kuskov — text: electronic // Procedia Structural Integrity. 2024. V. 65. P. 133—138.
  19. Корх М.К., Ригмант М.Б., Корх Ю.В., Ничипурук А.П. Методы и приборы контроля фазового состава, электрических и магнитных свойств хромоникелевых сталей // Вестник ИжГТУ имени М.Т. Калашникова. 2018. Т. 21. № 4. С. 4—12. doi: 10.22213/2413-1172-2018-4-4-12
  20. Горулева Л.С., Задворкин С.М., Мушников А.Н. Влияние пластической деформации на фазовый состав и электромагнитные характеристики аустенитной стали марки 321Н (08Х18Н10Т) // Diagnostics, Resource and Mechanics of Materials and Structures. 2022. № 6. С. 95—106. doi: 10.17804/2410-9908.2022.6.095-106
  21. Неразрушающий контроль. Справочник / под ред. В. В. Клюева. В 8 томах. Т. 2. В 2-х кн. Кн. 1: Контроль герметичности. Кн. 2: Вихретоковый контроль. М.: Машиностроение, 2003. 688 с.
  22. Дякин В.В., Сандовский В.А. Теория и расчет накладных вихретоковых преобразователей. М.: Наука, 1981. 136 с.
  23. Talonen J., Aspegren P., Hänninen H. Comparison of different methods for measuring strain induced α-martensite content in austenitic steels / text: electronic // Materials Science and Technology. 2004. V. 20. URL: doi: 10.1179/026708304X4367
  24. Ригмант М.Б., Корх М.К., Давыдов Д.И., Шишкин Д.А., Корх Ю.В., Ничипурук А.П., Казанцева Н.В. Методы выявления мартенсита деформации в аустенитно-ферритных сталях // Дефектоскопия. 2015. № 11. С. 28—42.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».