🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Acesso aberto Acesso aberto  Acesso é fechado Acesso está concedido  Acesso é fechado Somente assinantes

Volume 104, Nº 11 (2025)

Capa

Edição completa

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

ARTICLES

FAUNISTIC AND TAXONOMIC DATA ON ORIBATID MITES (ACARI, ORIBATIDA) FROM THE KON CHU RANG NATURE RESERVE, VIETNAM

Ermilov S.

Resumo

The present study is based on the oribatid mite (Oribatida) material collected from the Kon Chu Rang Nature Reserve, central Vietnam. A list of 86 species or subspecies belonging to 54 genera and 33 families is presented. Two new species are described from forest litter: Oxyamerus konchuensis Ermilov sp. n. (Oxyameridae) and Yoshiobodes (Yoshiobodes) paranakatamarii Ermilov sp. n. (Carabodidae).
Russian Journal of Zoology. 2025;104(11):3-14
pages 3-14 views

BRYOCAMPTUS (BRYOCAMPTUS) OESCULUS SP. N. (COPEPODA, HARPACTICOIDA) FROM THE HYPORHEIC COMPLEX OF THE ISKAR RIVER, BULGARIA

Apostolov A.

Resumo

Material of a Bryocamptus species, formerly referred to as Bryocamptus (Bryocamptus) aquaeductus Borutsky, 1934 from Bulgaria, is here recognized as a distinct new species. Specimens were recently obtained from a hypotheic zone of Iskar River, near the town of Koynaré, Bulgaria, from the bottom substrate represented by gravels of alluvial origin. Among the species in the subgenus Bryocamptus, the new species Bryocamptus (Bryocamptus) oesculus sp.n. most closely resembles Bryocamptus (Br.) aquaeductus, but it clearly differs from the type population from Ciscaucasia by the setal formula of P1–P4 and differences at the level of microcharacters, integumental sensilla and pores, and pores on the swimming legs. Similarity to other species of the pygmaeus–typhlops group is discussed, along with brief comments on the morphological similarities and differences between the new species and other species of this group. A brief ecological description and notes of the variability of the species are given.
Russian Journal of Zoology. 2025;104(11):15-29
pages 15-29 views

COLD RESISTANCE AND NORTHERN RANGE LIMIT OF THE GRASS SNAKE (NATRIX NATRIX, SQUAMATA, REPTILIA)

Berman D., Alfimov A., Bulakhova N., Meshcheryakova E.

Resumo

The cold resistance of the Grass snake (Natrix natrix), the northernmost oviparous snake species in Eurasia, was instrumentally studied. Its records at the northern limit of the range were compared with soil temperatures in potential wintering horizons. The Grass snake was shown to be a cold-intolerant species. At temperatures below 3°C, it loses mobility, but, contrary to existing ideas about its intolerance to small positive temperatures, it can survive for more than four months at a range of 0...1°C. Natrix natrix is capable of surviving in a supercooled state at −1°C for 5 days, but with further cooling, it freezes and dies. In terms of cold resistance, the Grass snake is close to the North American Garter snake (Thamnophis sirtalis, T. radix) and the North American Grass snake (Nerodia sipedon), but it is less resistant than the Common adder (Vipera berus) which can withstand supercooling to −2.2°C for up to four months. The position of the northern range limit of the Grass snake (from 64° N in Fennoscandia to 56° N in the Baikal region) is related to neither the geographical distribution of soil temperatures nor the depth of their freezing as recorded at weather stations. The Grass snake is found in areas that, based on its cold resistance, are unsuitable for habitation. A probable explanation is traditional, being its wintering in particular habitats with positive temperatures in the soil (in river valleys, swamps and rocky outcrops, etc.). The northern limit of the Grass snake range seems to be determined not by winter soil temperatures, but more likely by summer factors, one of which may be the availability of places with the summer temperatures necessary for egg incubation.
Russian Journal of Zoology. 2025;104(11):30-39
pages 30-39 views

DURATION OF TONIC IMMOBILITY ALLOWS TO PREDICT THE BEHAVIOR OF A YOUNG CAPERCAILLIE (TETRAO UROGALLUS, AVES) WHEN ENCOUNTERING A PREDATOR

Minina M., Klimova A., Druzyaka O., Druzyaka A.

Resumo

The implementation of grouse reintroduction programs is often complicated by the animals released into the wild quickly die as a result of attacks by predators. The ability to predict in advance the reactions of introduced animals to danger is an important step in the development of selective release programs that increase the efficiency of artificial replenishment of populations. Our subjects were three-week old captive-bred wood grouse. The chicks were placed in a new environment and presented with the silhouettes of a flying goose and hawk. We attempted to predict the birds’ individual reactions to this situation. The prediction was based on the results of the tonic immobility test, a classic method for assessing individual stress reactions. We performed the test with each chick twice, determining the duration of tonic immobility at the age of two weeks (TH2) and at the age of three weeks (TH3), one day before the presentation of the silhouettes. Chicks with a higher TH3 either paid no attention to the "hawk" when it appeared or, after a short freeze, returned to exploring or eating. Chicks with lower TH3 demonstrated a more pronounced defensive reaction: prolonged freezing or flight. The reaction to the "goose", always presented before the "hawk", was not correlated with TH3. The duration of tonic immobility was repeatable in the third week of life, but we failed to predict the defensive reactions of three-week old wood grouse based on TH2. The defensive reactions of wood grouse had high contextual and temporal consistency in the fourth week of life.
Russian Journal of Zoology. 2025;104(11):40–50
pages 40–50 views

POLYMELIA IN A COMMON TEAL (ANAS CRECCA) IN KAMCHATKA

Gerasimov N., Artukhin Y.

Resumo

This paper reports the first documented case of polymelia in a wild bird belonging to the order Anseriformes. A young male common teal (Anas crecca) was obtained in the autumn of 2012 near the settlement of Klyuchi (56.3° N, 160.8° E) in central Kamchatka. The bird possessed a supernumerary hind limb attached to the caudal part of the pelvis, and the foot contained five toes.
Russian Journal of Zoology. 2025;104(11):51-57
pages 51-57 views

COMPARATIVE MORPHOLOGY OF THE SKIN OF THE WATER DEER (HYDROPOTES INERMIS) AND MUNTJACS (MUNTIACUS SPP.), CERVIDAE, ARTIODACTYLA

Chernova O., Shchelkanov E., Khatsaeva R., Pankratov D.

Resumo

The fur and skin glands of phylogenetically close species with partially overlapping distribution ranges were comparatively studied using light and electron microscopy: the Water deer (Hydropotes inermis) and the muntiacs (Muntiacus munijak, M. reevesi, M. vaginalis and M. vuquangensis). The color and diversity of the fur, as well as the development of specific skin glands were shown to vary in the species compared, demonstrating features of adaptation to different habitats, since the former prefers near-water biotopes, vs the latter which dwell in savannas or forests. The fur color of the Water deer is variegated, while that of the muntiacs is more uniform, although color markings are present. It performs a camouflage function in accordance with the habitats of these deer. The Water deer fur is significantly heterogeneous in hair size (especially on the back, side and thighs), as well as the knottiness of the guard hairs, which protect it when moving in thickets of thorny bushes and sharp-leaved grasses along the banks of rivers and swamps. The species compared have no abundant underfur, this being typical of inhabitants of the temperate monsoon and tropical zones where there is no need in a powerful warm cover. However, the medulla of the guard hairs is quite well developed, increasing their thermal insulation through protecting the covers from seasonal and daily fluctuations in temperature and humidity. The architecture of the medulla in the hairs of the Water deer is similar to that of the hairs of elk, musk deer, roe deer and red deer, whereas in the muntiacs it is more simply structured and similar to that of the Sika deer, thus suggesting a low phylogenetic status of these species. The metric characteristics of the cuticle ornament reveal similarities in this feature between the Water deer and the Alceinae deer, while in the muntiacs it demonstrates, like in the European roe deer and the Siberian musk deer, isolation from the main group of species of the genus Cervus, in agreement with the taxonomy of the infraorder Pecora. The set of specific skin glands is broad in the study species, which is typical of deer, but there are also additional glandular formations, such as the inguinal glands in the Water deer (the only case among the deer), the frontal and mental glands, whereas the tarsal and metatarsal glands are absent. These differences are probably associated with the peculiarities of marking activity in different habitats: the Water deer marks grassy and shrubby vegetation, and probably lying downs, vs the muntiacs that leave marks on the trunks, branches and crowns of trees and shrubs.
Russian Journal of Zoology. 2025;104(11):58-84
pages 58-84 views

FUR STRUCTURE OF THE MUMMY OF A HOLOCENE BROWN BEAR (URSUS ARCTOS LINNAEUS, 1758) FROM PERMAFROST DEPOSITS OF YAKUTIA

Chernova O., Boeskorov G., Cheprasov M., Novgorodov G.

Resumo

The fur of the mummy of an adult female Brown bear (Ursus arctos) (3,500-year old ‘Etherican bear’, Holocene) found in Yakutia was studied using light and scanning electron microscopy. It was compared to the fur of recent bears, showing their similarity in color, differentiation, and hair fine structure. The fur forms a coarse, tangled, and springy kemp due to polymorphism and size and dimensional characteristics of guard hairs (length and thickness, degree of development of the medulla, height and patterns of the cuticle), and wavy profile of the hair shaft. This cover effectively protects the animal's body from mechanic damage due to damping and preventing skin over-hydration. The air-bearing medulla of the hairs is poorly developed, which, together with the absence of a thick underfur, reduces the heat-protective properties of the fur, which is compensated for by a significant air layer in the loose, shaggy fur made of chaotically intertwined wavy hairs.
Russian Journal of Zoology. 2025;104(11):85–97
pages 85–97 views

GENETIC VARIABILITY AND SUBSPECIFIC DIFFERENTIATION OF THE STEPPE LEMMING (LAGURUS LAGURUS PALL., CRICETIDAE, RODENTIA), BASED ON AN ANALYSIS OF VARIATIONS IN THE MITOCHONDRIAL CYTOCHROME b GENE

Dupal T., Moroldoev I., Krivopalov A.

Resumo

A phylogeographic analysis of the Steppe lemming, Lagurus lagurus, was performed using molecular genetic data obtained from the original collection and those deposited in the NCBI database. The nucleotide sequences of the cytb gene were analyzed. The level of genetic variability and differentiation of the species across the distribution range was found to be relatively low. All cytb sequences were divided into three haplogroups corresponding to the subspecies lagurus, aliorum and abacanicus. The highest level of genetic polymorphism for this marker was found in the subspecies abacanicus. The low genetic differentiation of the subspecies agressus seems to indicate a relatively recent colonization of the northwestern part of the range by the Steppe lemming.
Russian Journal of Zoology. 2025;104(11):98-105
pages 98-105 views

MORPHOLOGICAL VERIFICATION OF THE SUBGENERIC STATUS OF THE OLKHON MOUNTAIN VOLE (ALTICOLA OLCHONENSIS LITVINOV, 1960, ARVICOLINAE, RODENTIA) BASED ON AN ANALYSIS OF THE SHAPE VARIATIONS OF THE THIRD UPPER MOLAR (M3)

Vasil’eva I., Vasil’ev A., Bolshakov V.

Resumo

A comparative analysis of the variations in the shape of the third upper molar (M3) in 11 taxa of the genus Alticola, based both on geometric morphometrics and the morphological mapping of the molecular phylogenetic tree, confirmed molecular data that the Olkhon mountain vole (Alticola olchonensis Litvinov, 1960) belongs to the subgenus Alticola rather than the subgenus Aschizomys. The morphological hiatus of the Olkhon mountain vole in the morphospace variation of the M3 shape, compared with the taxonomically similar Silvery mountain vole (A. argentatus) and the Tuvan vole (A. tuvinicus), confirmed its species status. High phylogenetic index values were obtained, indicating a high phylogenetic signal in M3 tooth shape. This allowed for the evolutionary transformations in the configuration of the M3 tooth in the genus Alticola to be reconstruct, also constructing a morphological phylogeny which largely coincides with the molecular phylogeny obtained based on mitochondrial and nuclear genes.
Russian Journal of Zoology. 2025;104(11):106–124
pages 106–124 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».