Собственные значения неэрмитовой ленточной тёплицевой матрицы, стремящиеся к простым точкам предельного множества
- Авторы: Богойя М.1, Грудский С.М2,3
-
Учреждения:
- Университет дель Валле
- CINVESTAV-IPN
- Южный федеральный университет, Региональный математический центр
- Выпуск: Том 65, № 7 (2025)
- Страницы: 1060-1076
- Раздел: ОБЩИЕ ЧИСЛЕННЫЕ МЕТОДЫ
- URL: https://bakhtiniada.ru/0044-4669/article/view/304076
- DOI: https://doi.org/10.31857/S0044466925070011
- EDN: https://elibrary.ru/JWXNCH
- ID: 304076
Цитировать
Аннотация
Ключевые слова
Об авторах
М. Богойя
Университет дель Валле
Email: johan.bogoya@correounivalle.edu.co
Кали, Колумбия
С. М Грудский
CINVESTAV-IPN; Южный федеральный университет, Региональный математический центр
Email: grudsky@math.cinvestav.mx
CDMX, Мексика; Ростов-на-Дону , Россия
Список литературы
- Tyrtyshnikov E.E. A unifying approach to some old and new theorems on distribution and clustering // Linear Algebra Appl. 232 (1996) 1-43.
- Böttcher A., Grudsky S.M. Spectral properties of banded Toeplitz matrices // Society for Industrial and Applied Mathematics (SIAM), 2005.
- Böttcher A., Silbermann B. Analysis of Toeplitz operators, 2nd Edition, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2006.
- Grenander U., Szego G. Toeplitz forms and their applications, 2nd Edition, California Monographs in Mathematical Sciences, Chelsea Publishing Co., New York, 1984.
- Schmidt P., Spitzer F. The Toeplitz matrices of an arbitrary Laurent polynomial // Math. Scand. 8 (1960) 15-38.
- Böttcher A., Silbermann B. Introduction to large truncated Toeplitz matrices, Universitext, Springer-Verlag, New York, 1999.
- Böttcher A., Gasca J., Grudsky S.M., Kozak A.V. Eigenvalue clusters of large tetradiagonal Toeplitz matrices // Integr. Equat. Oper. Th. 93, Paper No. 8 (2021).
- Ullman J.L. A problem of Schmidt and Spitzer, Bull. Amer. Math. Soc. 73 (1967) 883-885.
- Bogoya M., Gasca J., Grudsky S.M. Eigenvalues for a class of non-Hermitian tetradiagonal Toeplitz matrices // J. Spectr. Theory 15 (1) (2025) 441-477.
- Böttcher A., Grudsky S.M., Maximenko E.A. Inside the eigenvalues of certain Hermitian Toeplitz band matrices // J. Comput. Appl. Math. 233 (9) (2010) 2245-2264.
- Bogoya M., Böttcher, A., Grudsky S.M., Maximenko E.A. Asymptotics of the eigenvalues and eigenvectors of Toeplitz matrices // Sb. Mat. 208 (11) (2017) 4-28.
- Bogoya M., Böttcher A., Grudsky S.M. Asymptotic eigenvalue expansions for toeplitz matrices with certain Fisher-Hartwig symbols // J. Math. Sci. 271 (2) (2023) 176-196.
- Ekström S.-E., Garoni C., Serra-Capizzano S. Are the eigenvalues of banded symmetric Toeplitz matrices known in almost closed form? // Exper. Math. 27 (4) (2018) 478-487.
- Ekström S.-E., Garoni C. A matrix-less and parallel interpolation-extrapolation algorithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices // Numer. Algorithms 80 (2019) 819-848.
- Ekström S.-E., Vassalos P. A matrix-less method to approximate the spectrum and the spectral function of Toeplitz matrices with real eigenvalues // Numer. Algorithms 89 (2022) 701-720.
- Widom H. Eigenvalue distribution of nonselfadjoint Toeplitz matrices and the asymptotics of Toeplitz determinants in the case of nonvanishing index, in: Topics in operator theory: Ernst D. Hellinger memorial volume, Vol. 48 of Oper. Theory Adv. Appl., Birkhäuser, Basel, 1990, pp. 387-421.
- Bolten M., Ekström S.-E., Furet I., Serra-Capizzano S. Toeplitz momentary symbols: Definition, results, and limitations in the spectral analysis of structured matrices // Linear Algebra Appl. 651 (2022) 51-82.
Дополнительные файлы
