LORENZ MAJORIZATION AND PIGOU—DALTON TRANSFERS IN THE RAMSEY—BEWLEY MODEL
- Authors: Parastaev G.S1,2, Shananin A.A3,4,5,6,7
-
Affiliations:
- Lomonosov Moscow State University
- Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences
- Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences
- Moscow Center of Fundamental and Applied Mathematics, Lomonosov Moscow State University
- Moscow Institute of Physics and Technology (National Research University)
- Peoples’ Friendship University of Russia (RUDN University)
- Federal State Budgetary Institution “All-Russian Research Institute of Labor” of the Ministry of Labor of the Russian Federation
- Issue: Vol 65, No 10 (2025)
- Pages: 1608–1624
- Section: Optimal control
- URL: https://bakhtiniada.ru/0044-4669/article/view/350123
- DOI: https://doi.org/10.31857/S0044466925100012
- ID: 350123
Cite item
Abstract
About the authors
G. S Parastaev
Lomonosov Moscow State University; Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences
Email: parastaev1996@yandex.ru
Moscow, Russia; Moscow, Russia
A. A Shananin
Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences; Moscow Center of Fundamental and Applied Mathematics, Lomonosov Moscow State University; Moscow Institute of Physics and Technology (National Research University); Peoples’ Friendship University of Russia (RUDN University); Federal State Budgetary Institution “All-Russian Research Institute of Labor” of the Ministry of Labor of the Russian Federation
Email: alexshan@yandex.ru
Moscow, Russia; Moscow, Russia; Dolgoprudny, Russia; Moscow, Russia; Moscow, Russia
References
- Bourguignon F., Scott-Railton T. The Globalization of Inequality. Princeton and Oxford: Princeton University Press, 2015.
- Aghion P., Williamson J. G. Growth, Inequality and Globalization: Theory, History and Policy. Cambridge: Cambridge University Press, 1999.
- Atkinson A. B. Inequality: What Can Be Done? Cambridge: Harvard University Press, 2015.
- Piketty T., Goldhammer A. Capital in the Twenty-First Century. Cambridge: The Belknap Press of Harvard University Press, 2014.
- Piketty T., Goldhammer A. Capital and Ideology. Cambridge: The Belknap Press of Harvard University Press, 2020.
- Ramsey F. P. A Mathematical Theory of Saving // Econ. J. 1928. V. 38. № 152. P. 543–559.
- Bewley T. F. An integration of equilibrium theory and turnpike theory // J. Math. Econ. 1982. V. 10. P. 233–267.
- Espino E. On Ramsey’s conjecture: efficient allocations in the neoclassical growth model with private information // J. Econ. Theory. 2005. V. 121. № 2. P. 192–213.
- Becker R. A. Equilibrium Dynamics with Many Agents. In: Dana R.-A., Le Van C., Mitra T., Nishimura K. Handbook on Optimal Growth 1: Discrete Time. Berlin: Springer, 2006. P. 385–442.
- Bosi S., Seegmuller T. On the Ramsey equilibrium with heterogeneous consumers and endogenous labor supply // J. Math. Econ. 2010. V. 46. № 4. P. 475–492.
- Mitra T., Sorger G. On Ramsey’s conjecture // J. Econ. Theory. 2013. V. 148. № 5. P. 1953–1976.
- Борисов К. Ю., Пахиш М. А. Модели экономического роста с неоднородным дисконтированием // Ж. вычисли. матем. и матем. физ. 2023. Т. 63. № 3. С. 355–379.
- Lorenz M. O. Methods of measuring concentration of wealth // Publ. Am. Stat. Assoc. 1905. V. 9. № 70. P. 209–219.
- Marshall A. W., Olkin I., Arnold B. C. Inequalities: Theory of Majorization and Its Applications. Second Edition. New York: Springer, 2011.
- Парастаев Г. С., Шананин А. А. Гипотеза Рамсея о социальной стратификации как принцип отбора по Фишеру // Ж. вычисли. матем. и матем. физ. 2024. Т. 64. № 12. С. 2420–2448.
- Duesenberry J. S. Income, Saving and the Theory of Consumer Behavior. Cambridge: Harvard University Press, 1949.
- Асеев С. М., Бесов К. О., Кряжимский А. В. Задачи оптимального управления на бесконечном интервале времени в экономике // Успехи матем. наук. 2012. Т. 67. Вып. 2 (404). С. 3–64.
- Hartman P. Ordinary differential equations. Second Edition. Philadelphia: Society of Industrial and Applied Mathematics, 2002.
- Alvaredo F., Atkinson A. B., Piketty T., Saez E. World inequality database [Электронный ресурс] / WID.world, 2024. http://wid.world/data (дата обращения: 07.07.2025)
Supplementary files



