STUDY OF RESONANCE PROPERTIES OF PAIRED NANOPARTICLES WITH MESOSCOPIC BOUNDARY CONDITIONS BY THE DISCRETE SOURCE METHOD
- Авторлар: Eremin Y.A1, Lopushenko V.V1
-
Мекемелер:
- Lomonosov Moscow State University
- Шығарылым: Том 65, № 7 (2025)
- Беттер: 1277-1285
- Бөлім: Mathematical physics
- URL: https://bakhtiniada.ru/0044-4669/article/view/304090
- DOI: https://doi.org/10.31857/S0044466925070155
- EDN: https://elibrary.ru/JYPUJE
- ID: 304090
Дәйексөз келтіру
Аннотация
Авторлар туралы
Yu. Eremin
Lomonosov Moscow State University
Email: eremin@cs.msu.ru
Moscow, Russia
V. Lopushenko
Lomonosov Moscow State University
Email: lopusink@cs.msu.ru
Moscow, Russia
Әдебиет тізімі
- Jeong H.H., Adams M.C., Gunther J.P., et al. Arrays of Plasmonic Nanoparticle Dimers with Defined Nanogap Spacers // ACS Nano. 2019. V. 13. P. 11453–11459.
- Bauman S.J., Darweesh A.A., Furr M., et al. Tunable SERS Enhancement via Sub-Nanometer Gap Metasurfaces // ACS Appl. Mater. Interfaces. 2022. V. 14. P. 15541–15548.
- Jin H., Cai Y., Song C., et al. Advances in single-molecule surface-enhanced Raman spectroscopy (SERS) for biosensing // Vibrational Spectroscopy. 2025. V. 138. 103784.
- Yamamoto T., Yamane H., Yokoshi N., et al. Optical imaging of a single molecule with subnanometer resolution by photoinduced force microscopy // ACS Nano. 2024. V. 18. № 2. P. 1724–1732.
- Nan L., Girdalez-Martinez J., Stefancu A., et al. Investigating plasmonic catalysis kinetics on hot-spot engineered nanoantennae // Nano Lett. 2023. V. 23. № 7. P. 2883–2889.
- Singh S., Kumar V., Dhanjal D.S., et al. Biological Biosensors for Monitoring and Diagnosis/ In Microbial Biotechnology: Basic Research and Applications. 2020. P. 317–335.
- Zheng Y., Song X., Fredj Z., et al. Challenges and perspectives of multi-virus biosensing techniques: a review // Anal. Chim. Acta. 2023. V. 1244. № 4. 340860.
- Mortensen N.A. Mesoscopic electrodynamics at metal surfaces (Review) // Nanophotonics. 2021. V. 10. № 10. P. 2563–2616.
- Stamatopoulou P.E., Tserkezis C. Finite-size and quantum effects in plasmonics: manifestations and theoretical modelling [Invited] // Optical Materials Express. 2022. V. 12. № 5. P. 1869–1893.
- Baghranyan H.M., Ciraci C. Fluorescence Quenching in Plasmonic Dimers Due to Electron Tunneling // Nanophotonics. 2022. V. 11. P. 2473–2482.
- David C., Garcia de Abajo F.J. Spatial Nonlocality in the Optical Response of Metal Nanoparticles // J. Phys. Chem. C. 2011. V. 15. P. 19470–19475.
- Mortensen N.A., Raza S., Wubs M., et al. A generalized non-local optical response theory for plasmonic nanostructures // Nat. Commun. 2014. V. 5. 3809.
- Babaze A., Ogando E., Stamatopoulou P.E., et al. Quantum Surface Effects in the Electromagnetic Coupling between a Quantum Emitter and a Plasmonic Nanoantenna: Time-Dependent Density Functional Theory vs. Semiclassical Feibelman Approach // Opt. Express. 2022. V. 30. 21159.
- Tserkezis C., Yan W., Hsieh W., et al. On the Origin of Nonlocal Damping in Plasmonic Monomers and Dimers // Int. J. Mod. Phys. B. 2017. V. 31. 1740005.
- Baghramyan H., Sala F.D., Ciraci C. Laplacian-Level Quantum Hydrodynamic Theory for Plasmonics // Phys. Rev. X. 2024. V. 11. L011049.
- Zhou Q., Zhang P., Chen X. Quasinormal mode theory for nanoscale electromagnetism informed by quantum surface response // Phys. Rev. B. 2022. V. 105. № 12. L125419.
- Yang Y., Zhu D., Yan W., et al. A general theoretical and experimental framework for nanoscale electromagnetism // Nature. 2019. V. 576. Р. 248–252.
- Echarri R.A., Goncalves P.A.D., Tserkezis C., et al. Optical response of noble metal nanostructures: quantum surface effects in crystallographic facets // Optica. 2021. V. 8. № 5. Р. 710.
- Khalid M., Morandi O., Mallet E., et al. Influence of the Electron Spill-out and Nonlocality on Gap Plasmons in the Limit of Vanishing Gaps // Phys. Rev. B, 2021. V. 104. L155435.
- Epемин Ю.А., Свечников А.Г. Кавзликлассические модели квантовой наноплазмоники на основе метода Дискретных источников (обзор) // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. № 4. С. 34–62.
- Epемин Ю.А., Лопушенко В.В. Анализ влияния квантовых эффектов на оптические характеристики плазмонных наночастиц методом дискретных источников// Ж. вычисл. матем. и матем. физ. 2023. Т. 63. № 11. С. 1911–1921.
- Epемин Ю.А., Лопушенко В.В. Сравнительный анализ влияния поверхностных квантовых эффектов на оптические характеристики наночастиц щелочных и благородных металлов // Ж. вычисл. матем. и матем. физ. 2024. Т. 64. № 7. С. 207–215.
- Колтон Д., Кресс Р. Методы интегральных уравнений в теории рассеяния. М.: Мир, 1987.
- Raza S., Bozhevolnyi S.I., Wubs M., Mortensen N.A. Nonlocal optical response in metallic nanostructures. Topical Review // J. Phys. Condens. Matter. 2015. V. 27. № 18. Р. 183204.
- Zhang H., Huang C. Optical response and spill-out effects of metal nanostructures with arbitrary shape // J. Opt. Soc. Am. B. 2021. V. 38. № 11. Р. 3285–3291.
- Bundgaard I.J., Hansen C.N., Stamatopoulou P.E., Tserkezis C. Quantum-informed plasmonics for strong coupling: the role of electron spill-out // JOSA B. 2024. V. 41. № 5. Р. 1144–1152.
- Polyanskiy M.N.. Refractiveindex.info database of optical constants // Scientific Data. 2024. V. 11. Art. 94. https://refractiveindex.info.
- Eriksen M.H., Tserkezis C., Mortensen N.A., Cox J.D. Nonlocal effects in plasmon-emitter interactions // Nanophotonics. 2024. V. 13. № 15. Р. 2741–2751.
Қосымша файлдар
