A FAST NUMERICAL METHOD FOR THE SOURCE RECONSTRUCTION IN THE COAGULATION-FRAGMENTATION EQUATION
- Authors: Zaks R.T1,2, Matveev S.A2,1, Shutyaev V.P1
-
Affiliations:
- Marchuk Institute of Computational Mathematics RAS
- Lomonosov Moscow State University
- Issue: Vol 65, No 7 (2025)
- Pages: 1091-1109
- Section: General numerical methods
- URL: https://bakhtiniada.ru/0044-4669/article/view/304078
- DOI: https://doi.org/10.31857/S0044466925070033
- EDN: https://elibrary.ru/JXJWBM
- ID: 304078
Cite item
Abstract
About the authors
R. T Zaks
Marchuk Institute of Computational Mathematics RAS; Lomonosov Moscow State University
Email: zaks.robert@bk.ru
Moscow, Russia
S. A Matveev
Lomonosov Moscow State University; Marchuk Institute of Computational Mathematics RAS
Email: matseralex@gmail.com
Moscow, Russia
V. P Shutyaev
Marchuk Institute of Computational Mathematics RASMoscow, Russia
References
- Brilliantov N., Krapivsky P.L., Bodrova A., Spahn F., Hayakawa H., Stadnichuk V., Schmidt J. Size distribution of particles in Saturn’s rings from aggregation and fragmentation // Proceed. Nation. Acad. Sci. 2015. T. 112. №. 31. C. 9536–9541.
- Sabelfeld K.K., Eremeev G. A hybrid kinetic-thermodynamic Monte Carlo model for simulation of homogeneous burst nucleation // Monte Carlo Meth. Appl. 2018. T. 24. №. 3. C. 193–202.
- Алоян А. Е. Динамика и кинетика газовых примесей и аэрозолей в атмосфере. М.: ИВМ РАН, 2002.
- Coufort C., Bouyer D., Line A., Haut B. Modelling of flocculation using a population balance equation // Chemic. Engineer. Proc.: Process Intensificat. 2007. V. 46. № 12. P. 1264–1273.
- Zhamsueva G., Zayakhanov A., Teydypov V., Dementeva A., Balzhanov T. Spatial-temporal variability of small gas impurities over lake Baikal during the forest fires in the summer of 2019 // Atmosphere. 2020. V. 12. № 1. P. 20.
- Brilliantov N.V., Zagidullin R.R., Matveev S.A., Smirnov A.P. Aggregation kinetics in sedimentation: Effect of diffusion of particles // Comput. Math. and Math. Phys. 2023. V. 63. № 4. P. 596–605.
- Purohit A., Velizhanin K.A. Kinetics of carbon condensation in detonation of high explosives: First-order phase transition theory perspective // J. Chemic. Phys. 2021. T. 155. № 16.
- Tanxun B.A. Уравнение Смолуховского. М.: Физматлит, 2002.
- Melzak Z.A. A scalar transport equation // Transact. Amer. Math. Soc. 1957. V. 85. № 2. P. 547–560.
- McLeod J.B. On an infinite set of non-linear differential equations // Quarterly J. Math. 1962. V. 13. № 1. P. 119–128.
- Mirzaev I., Byrne E.C., Bortz D.M. An inverse problem for a class of conditional probability measure-dependent evolution equations // Inverse Problem. 2016. 32.9: 095005.
- Agoshkov V.I., Dubovski P.B. Solution of the reconstruction problem of a source function in the coagulation-fragmentation equation // Russ. J. Numer. Anal. Math. Model. 2002. V. 17. № 4. P. 319–330.
- Mameeea C.A., Tupmountukova E.E., Coupino A.П., Eputauamno H.B. Быстрый метод решения уравнений агрегационно-фрагментационной кинетики типа уравнений Смолуховского // Вычисл. методы и программирование. 2014. Т. 15. № 1. С. 1–8.
- Matveev S.A., Smirnov A.P., Tyryshnikov E.E. A fast numerical method for the Cauchy problem for the Smoluchowski equation // J. Comput. Phys. 2015. V. 282. P. 23–32.
- Tyryshnikov E.E. A brief introduction to numerical analysis. Springer Science & Business Media, 1997.
- Пененко А.В., Сашкова А.Б. Идентификация источника в уравнении Смолуховского с использованием ансамбля решений сопряженного уравнения // Сиб. журн. вычисл. матем. 2020. Т. 23. № 2. С. 183–199.
- Penenko A.V. A Newton–Kantorovich method in inverse source problems for production-destruction models with time series-type measurement data // Numer. Analyse. Appl. 2019. V. 12. P. 51–69.
- Шутаев В.П. Операторы управления и итерационные алгоритмы в задачах вариационного усвоения данных. М.: Наука, 2001.
- Armijo L. Minimization of functions having Lipschitz continuous first partial derivatives // Pacific J. Math. 1966. V. 16. № 1. P. 1–3.
- Wolfe P. Convergence conditions for ascent methods // SIAM Rev. 1969. V. 11. № 2. P. 226–235.
- Желиков Д.А., Tupmountukova E.E. Параллельная реализация матричного крестового метода // Вычисл. методы и программирование. 2015. Т. 16. С. 369–375.
- Osinsky A. Polynomial time p-locally maximum volume search // Calcolo. 2023. V. 60. № 3. P. 42.
- Zamarashkin N.L., Osinsky A.I. On the accuracy of cross and column low-rank maxvol approximations in average // Comput. Math. and Math. Phys. 2021. V. 61. № 5. P. 786–798.
- Tyryshnikov E.E. Piecewise separable matrices // Calcolo. 2005. V. 42. № 3–4. P. 243–248.
Supplementary files
