Tensor cross interpolation for global discrete optimization with application to Bayesian network inference
- Authors: Dolgov S.1, Savostyanov D.2
-
Affiliations:
- University of Bath
- University of Essex
- Issue: Vol 65, No 7 (2025)
- Pages: 1077-1090
- Section: General numerical methods
- URL: https://bakhtiniada.ru/0044-4669/article/view/304077
- DOI: https://doi.org/10.31857/S0044466925070023
- EDN: https://elibrary.ru/JXGDIL
- ID: 304077
Cite item
Abstract
About the authors
S. Dolgov
University of Bath
Email: S.Dolgov@bath.ac.uk
Bath, United Kingdom
D. Savostyanov
University of Essex
Email: D.Savostyanov@essex.ac.uk
Colchester, United Kingdom
References
- Tu Z., Lu Y. A robust stochastic genetic algorithm (StGA) for global numerical optimization // IEEE Trans Evolutionary Computation 8 (5) (2004) 456–470. https://doi.org/10.1109/TEVC.2004.831258
- Venkatraman S., Yen G. A generic framework for constrained optimization using genetic algorithms // IEEE Trans Evolutionary Computation 9 (4) (2005) 424–435. https://doi.org/10.1109/TEVC.2005.846817
- Weise T. Global optimization algorithms — theory and application, Self-Published Thomas Weise, 2009.
- Ha S.-Y., Jin S., Kim D. Convergence and error estimates for time–discrete consensus–based optimization algorithms // Numer. Math. 147 (2021) 255–282. https://doi.org/10.1007/s00211-021-01174-y
- Totzeck C. Trends in consensus–based optimization, in: N. Bellomo, J. A. Carrillo, E. Tadmor (Eds.), Active Particles, Volume 3: Advances in Theory, Models, and Applications, Springer, 2022, pp. 201–226. https://doi.org/10.1007/978-3-030-93302-9_6
- Kalise D., Sharma A., Tretyakov M.V. Consensus-based optimization via jump-diffusion stochastic differential equations // Mathematical Models and Methods in Applied Sciences 33 (02) (2023) 289–339. https://doi.org/10.1142/S0218202523500082
- Borghi G., Herty M., Pareschi L. Constrained consensus–based optimization // SIAM J Optimization 33 (1) (2023) 211–236. https://doi.org/10.1137/22M1471304
- Huang H., Qiu J., Riedl K. Consensus–based optimization for saddle point problems // SIAM J Control and Optimization 62 (2) (2024) 1093–1121. https://doi.org/10.1137/22M1543367
- Fornasier M., Klock T., Riedl K. Consensus–based optimization methods converge globally // SIAM J Optimization 34 (3) (2024) 2973–3004. https://doi.org/10.1137/22M1527805
- Jensen H., Jerez D., Valdebenito M. An adaptive scheme for reliability–based global design optimization: A Markov chain Monte Carlo approach // Mechanical Systems and Signal Processing 143 (2020) 106836. https://doi.org/10.1016/j.ymssp.2020.106836
- Jensen H., Jerez D., Beer M. A general two–phase Markov chain Monte Carlo approach for constrained design optimization: Application to stochastic structural optimization // Computer Methods in Applied Mechanics and Engineering 373 (2021) 113487. https://doi.org/10.1016/j.cma.2020.113487
- Oseledets I.V. Tensor-train decomposition // SIAM J. Sci. Comput. 33 (5) (2011) 2295–2317. https://doi.org/10.1137/090752286
- Hackbusch W. Tensor Spaces And Numerical Tensor Calculus, Springer–Verlag, Berlin, 2012.
- Oseledets I.V., Tyryshnikov E.E. TT-cross approximation for multidimensional arrays // Linear Algebra Appl. 432 (1) (2010) 70–88. https://doi.org/10.1016/j.laa.2009.07.024
- Savostyanov D.V. Quasioptimality of maximum–volume cross interpolation of tensors // Linear Algebra Appl. 458 (2014) 217–244. https://doi.org/10.1016/j.laa.2014.06.006
- Dolgov S., Savostyanov D. Parallel cross interpolation for high–precision calculation of high–dimensional integrals // Comp. Phys. Comm. 246 (2020) 106869. https://doi.org/10.1016/j.cpc.2019.106869
- Harshman R.A. Foundations of the PARAFAC procedure: models and conditions for an explanatory multimodal factor analysis, UCLA Working Papers in Phonetics 16 (1970) 1–84.
- Caroll J.D., Chang J.J. Analysis of individual differences in multidimensional scaling via n-way generalization of Eckart–Young decomposition // Psychometrika 35 (1970) 283–319. https://doi.org/10.1007/BF02310791
- Kroonenberg P., de Leeuw J. Principal component analysis of three-mode data by means of alternating least squares algorithms // Psychometrika 45 (1) (1980) 69–97.
- Wang J.-H., Hopke P.K., Hancewicz T.M., Zhang S.L. Application of modified least squares regression to spectroscopic image analysis // Analyse Chim. Acta. 476 (2003) 93–109.
- Schollwöck U. The density-matrix renormalization group in the age of matrix product states // Annals of Physics 326 (1) (2011) 96–192. https://doi.org/10.1016/j.aop.2010.09.012
- Dolgov S.V., Savostyanov D.V. Alternating minimal energy methods for linear systems in higher dimensions // SIAM J. Sci. Comput. 36 (5) (2014) A2248–A2271. https://doi.org/10.1137/140953289
- Hubig C., McCulloch I.P., Schollwöck U., Wolf F.A. Strictly single-site DMRG algorithm with subspace expansion, Phys. Rev. B 91 (15) (2015) 155115. https://doi.org/10.1103/PhysRevB.91.155115
- Goreinov S.A., Zamarashkin N.L., Tyryshnikov E.E. Pseudo–skeleton approximations by matrices of maximum volume // Mathematical Notes 62 (4) (1997) 515–519. https://doi.org/10.1007/BF02358985
- Goreinov S.A., Oseledets I.V., Savostyanov D.V., Tyryshnikov E.E., Zamarashkin N.L. How to find a good submatrix, in: V. Olshevsky, E. Tyryshnikov (Eds.), Matrix Methods: Theory, Algorithms, Applications, World Scientific, Hackensack, NY, 2010, pp. 247–256.
- Zhelikov D.A., Oferkin I.V., Kaikova E.V., Sulimov A.V., Sulimov V.B., Tyryshnikov E.E. TTDock: a docking method based on tensor train decompositions // Numerical Methods and Programming 14 (3) (2013) 279–291. URL: http://mi.mathnet.ru/vmp114
- Suliinov A.V., Zheltkov D.A., Oferkin I.V., Kutov D.C., Katkova E.V., Tyryshnikov E.E., Suliinov V.B. Evaluation of the novel algorithm of flexible ligand docking with moveable target-protein atoms // Computational and Structural Biotechnology Journal 15 (2017) 275–285. https://doi.org/10.1016/j.csbj.2017.02.004
- Suliinov A., Kutov D., Ilin I., Zheltkov D., Tyryshnikov E., Suliinov V. Supercomputer docking with a large number of degrees of freedom, SAR and QSAR in Environmental Research 30 (10) (2019) 733–749. https://doi.org/10.1080/1062936X.2019.1659412
- Zheltkov D.A., Osinsky A. Global optimization algorithms using tensor trains, in: I. Lirkov, S. Margenov (Eds.), Large-Scale Scientific Computing, Springer International Publishing, Cham, 2020, pp. 197–202.
- Zheltkov D., Tyryshnikov E. Global optimization based on TT-decomposition // Russian Journal of Numerical Analysis and Mathematical Modelling 35 (4) (2020) 247–261. https://doi.org/10.1515/mam-2020-0021
- Sozykin K., Chertkov A., Schutski R., Phan A.-H., Cichocki A.S., Oseledets I. TTOpt: A maximum volume quantized tensor train-based optimization and its application to reinforcement learning, in: Advances in Neural Information Processing Systems, Vol. 35, 2022, pp. 26052–26065.
- Gillespie D.T. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions // J Comput. Phys. 22 (4) (1976) 403–434. https://doi.org/10.1016/0021-9991(76)90041-3
- Dolgov S., Savostyanov D. Tensor product algorithms for inference of contact network from epidemiological data, BMC Bioinformatics 25, article no. 285 (2024). https://doi.org/10.1186/s12859-024-05910-7
- van Kampen N.G. Stochastic processes in physics and chemistry, North Holland, Amsterdam, 1981.
- Chen W.-Y., Bokka S. Stochastic modeling of nonlinear epidemiology // Journal of Theoretical Biology 234 (4) (2005) 455–470. https://doi.org/10.1016/j.jtbi.2004.11.033
- Gillespie D.T. Approximate accelerated stochastic simulation of chemically reacting systems // The Journal of Chemical Physics 115 (4) (2001) 1716–1733. https://doi.org/10.1063/1.1378322
- Hemberg M., Barahona M. Perfect sampling of the master equation for gene regulatory networks // Biophysical journal 93 (2) (2007) 401–410. https://doi.org/10.1529/biophysj.106.099390
- Anderson D.F., Higham D.J. Multilevel Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics // Multiscale Modeling & Simulation 10 (1) (2012) 146–179. https://doi.org/10.1137/110840546
- Lester C., Baker R.E., Giles M.B., Yates C.A. Extending the multi-level method for the simulation of stochastic biological systems // Bulletin of Mathematical Biology 78 (8) (2016) 1640–1677. https://doi.org/10.1007/s11538-016-0178-9
- Hegland M., Burden C., Santoso L., MacNamara S., Booth H. A solver for the stochastic master equation applied to gene regulatory networks // Journal of Computational and Applied Mathematics 205 (2) (2007) 708–724. https://doi.org/10.1016/j.cam.2006.02.053
- Munsky B., Khammash M. The finite state projection algorithm for the solution of the chemical master equation // The Journal of chemical physics 124 (2006) 044104. https://doi.org/10.1063/1.2145882
- Jahnke T. An adaptive wavelet method for the chemical master equation // SIAM J. Sci. Comput. 31 (6) (2010) 4373. https://doi.org/10.1137/080742324
- Cao Y., Terebus A., Liang J. State space truncation with quantified errors for accurate solutions to discrete chemical master equation // Bulletin of Mathematical Biology 78 (4) (2016) 617–661. https://doi.org/10.1007/s11538-016-0149-1
- Kryven I., Roblitz S., Schutte C. Solution of the chemical master equation by radial basis functions approximation with interface tracking // BMC Systems Biology 9 (1) (2015) 67. https://doi.org/10.1186/s12918-015-0210-y
- Gupta A., Schwab C., Khammash M. DeepCME: A deep learning framework for computing solution statistics of the chemical master equation // PLoS Comput Biol 17 (12) (2021) e1009623. https://doi.org/10.1371/journal.pcbi.1009623
- Sukys A., Öcal K., Grima R. Approximating solutions of the chemical master equation using neural networks, iScience 25 (2022) 105010. https://doi.org/10.1016/j.isci.2022.105010
- Jahnke T., Huisinga W. A dynamical low-rank approach to the chemical master equation // Bulletin of Mathematical Biology 70 (2008) 2283--2302. https://doi.org/10.1007/s11538-008-9346-x
- Ammar A., Cueto E., Chinesta F. Reduction of the chemical master equation for gene regulatory networks using proper generalized decompositions // Int. J. Numer. Meth. Biomed. Engng. 28 (9) (2012) 960–973. https://doi.org/10.1002/cnm.2476
- Hegland M., Garcke J. On the numerical solution of the chemical master equation with sums of rank one tensors, ANZIAM 52 (2011) C628--C643. https://doi.org/10.21914/anziamj.v52i0.3895
- Kazeev V., Khammash M., Nip M., Schwab C. Direct solution of the Chemical Master Equation using Quantized Tensor Trains // PLOS Computational Biology 10 (3) (2014) e100359. https://doi.org/10.1371/journal.pcbi.1003359
- Dolgov S., Khoromskij B. Simultaneous state-time approximation of the chemical master equation using tensor product formats // Numer. Linear Algebra Appl. 22 (2) (2015) 197–219. https://doi.org/10.1002/nla.1942
- Dolgov S.V. A tensor decomposition algorithm for large ODEs with conservation laws // Computational Methods in Applied Mathematics 19 (2019) 23–38. https://doi.org/10.1515/cmam-2018-0023
- Vo H.D., Sidje R.B. An adaptive solution to the chemical master equation using tensors // The Journal of Chemical Physics 147 (4) (2017) 044102. https://doi.org/10.1063/1.4994917
- Dinh T., Sidje R.B. An adaptive solution to the chemical master equation using quantized tensor trains with sliding windows // Physical Biology 17 (6) (2020) 065014. https://doi.org/10.1088/1478-3975/aba1d2
- Ion I.G., Widmer C., Loukrezis D., Koeppl H., De Gersem H. Tensor-train approximation of the chemical master equation and its application for parameter inference // The Journal of Chemical Physics 155 (3) (2021) 034102. https://doi.org/10.1063/5.0045521
- GelB P., Matera S., Schütte C. Solving the master equation without kinetic Monte Carlo: Tensor train approximations for a CO oxidation model // Journal of Computational Physics 314 (2016) 489--502. https://doi.org/10.1016/j.jcp.2016.03.025
- Dolgov S., Savostyanov D. Tensor product approach to modelling epidemics on networks // Applied Mathematics and Computation 460 (2024) 128290. https://doi.org/10.1016/j.amc.2023.128290
- Goreinov S.A., Tyryshnikov E.E., Zamarashkin N.L. A theory of pseudo-skeleton approximations // Linear Algebra Appl. 261 (1997) 1--21. https://doi.org/10.1016/S0024-3795(96)00301-1
- Schneider J. Error estimates for two-dimensional cross approximation // J. Approx. Theory 162 (2010) 1685--1700. https://doi.org/10.1016/j.jat.2010.04.012
- Goreinov S.A., Tyryshnikov E.E. Quasiopitinality of skeleton approximation of a matrix in the Chebyshev norm // Doklady Math. 83 (3) (2011) 374--375. https://doi.org/10.1134/S1064562411030355
- Zamarashkin N.L., Osinsky A.I. New accuracy estimates for pseudoskeleton approximations of matrices // Doklady Mathematics 94 (3) (2016) 643--645. https://doi.org/10.1134/S1064562416060156
- Mikhalev A.Y., Oseledets I.V. Rectangular maximum--volume submatrices and their applications // Linear Algebra Appl. 538 (2018) 187--211. https://doi.org/10.1016/j.laa.2017.10.014
- Bartholdi III J.J. A good submatrix is hard to find, Operations Research Lett. 1 (5) (1982) 190--193.
- Tyryshnikov E.E. Incomplete cross approximation in the mosaic--skeleton method // Computing 64 (4) (2000) 367--380. https://doi.org/10.1007/s006070070031
- Rakhuba M.V., Oseledets I.V. Grid-based electronic structure calculations: the tensor decomposition approach // J. Comput. Phys. (2016). https://doi.org/10.1016/j.jcp.2016.02.023 URL: http://arxiv.org/abs/1508.07632
- Dolgov S., Anaya-Izquierdo K., Fox C., Scheichl R. Approximation and sampling of multivariate probability distributions in the tensor train decomposition // Statistics and Computing 30 (2020) 603--625. https://doi.org/10.1007/s11222-019-09910-z
- Cui T., Dolgov S. Deep composition of Tensor Trains using squared inverse Rosenblatt transports, arXiv preprint 2007.06968 (2020). URL: http://arxiv.org/abs/2007.06968
- Dolgov S., Kalise D., Saluzzi L. Data-driven Tensor Train gradient cross approximation for Hamilton–Jacobi–Bellman equations // SIAM Journal on Scientific Computing 45 (5) (2023) A2153–A2184. https://doi.org/10.1137/22M1498401
- Antil H., Dolgov S., Onwanta A. TTRISK: Tensor train decomposition algorithm for risk averse optimization // Numerical Linear Algebra with Applications 30 (3) (2023) e2481. https://doi.org/https://doi.org/10.1002/nla.2481
- Bebendorf M. Approximation of boundary element matrices // Numer. Math 86 (4) (2000) 565–589. https://doi.org/10.1007/p00005410
- Golub G.H., Van Loan C.F. Matrix Computations, Johns Hopkins University Press, Baltimore, MD, 2013.
- Neal L., Poole G. A geometric analysis of Gaussian elimination. II // Linear Alg. Appl. 173 (1992) 239–264. https://doi.org/10.1016/0024-3795(92)90432-A
- Goreinov S.A., Tyrtyshnikov E.E. The maximal-volume concept in approximation by low-rank matrices // Contemporary Mathematics 280 (2001) 47–51.
- Petrov S., Zamarashkin N. Sufficient recovery conditions for noise-buried low rank tensors, Tech. Rep. arXiv:2312.02088, arXiv (2023). URL: https://arxiv.org/abs/2312.02088
Supplementary files
