A POSTERIORI ERROR ESTIMATES FOR APPROXIMATE SOLUTIONS OF ELLIPTIC BOUNDARY VALUE PROBLEMS IN TERMS OF LOCAL NORMS AND OBJECTIVE FUNCTIONALS
- Authors: Muzalevsky A.V.1, Repin S.I.2, Frolov M.E.1
-
Affiliations:
- Peter the Great St. Petersburg Polytechnic University
- St. Petersburg Department of the V.A. Steklov Mathematical Institute of the Russian Academy of Sciences
- Issue: Vol 64, No 12 (2024)
- Pages: 2270–2285
- Section: General numerical methods
- URL: https://bakhtiniada.ru/0044-4669/article/view/279978
- DOI: https://doi.org/10.31857/S0044466924120042
- EDN: https://elibrary.ru/KCLPCF
- ID: 279978
Cite item
Abstract
About the authors
A. V. Muzalevsky
Peter the Great St. Petersburg Polytechnic UniversitySt. Petersburg, Russia
S. I. Repin
St. Petersburg Department of the V.A. Steklov Mathematical Institute of the Russian Academy of Sciences
Email: repin@pdmi.ras.ru
St. Petersburg, Russia; St. Petersburg, Russia; Peter the Great St. Petersburg Polytechnic University
M. E. Frolov
Peter the Great St. Petersburg Polytechnic UniversitySt. Petersburg, Russia
References
- Bangerth W., Rannacher R. Adaptive finite element methods for differential equations. Berlin: Birkhauser, 2003.
- Johnson C., Hansbo P. Adaptive finite elements in computational mechanics // Comput. Methods Appl. Mech. Engrg. 1992. V. 101. P. 143–181.
- Johnson C., Szepessy A. Adaptive finite element methods for conservation laws based on a posteriori error estimates // Commun. Pure and Appl. Math. 1995. V. XLVIII. P. 199–234.
- Mommer M.S., Stevenson R. A goal-oriented adaptive finite element method with convergence rates // SIAM J. Numer. Anal. 2009. V. 47. № 2. P. 861—886.
- Stein E., Ruter M., Ohnimus S. Error-controlled adaptive goal-oriented modeling and finite element approximations in elasticity // Comput. Meth. Appl. Mech. Engrg. 2007. V. 196. № 37—40. P. 3598—3613.
- Repin S. I. A posteriori error estimation for variational problems with uniformly convex functionals // Math. Comput. 2000. V. 69. № 230. P. 481–500.
- Repin S. A posteriori estimates for partial differential equations. Berlin: Walter de Gruyter GmbH & Co. KG, 2008.
- Репин С.И. Тождество для отклонений от точного решения задачи A u + ` = 0 и его следствия // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. № 12. С. 22–45.
- Repin S., Sauter S. Accuracy of Mathematical Models. Dimension Reduction, Simplification, and Homogenization. EMS Tracts in Mathematics. Vol. 33. 2020.
- Репин С.И. Оценки отклонения от точных решений краевых задач в мерах более сильных, чем энергетическая норма // Ж. вычисл. матем. и матем. физ. 2020. Т. 60. № 5. С. 767–783
- Repin S.I. A posteriori estimates in local norms // J.Math. Sci. 2004. V. 124 № 3. P. 5026–5035.
- Prager W., Synge J.L. Approximations in elasticity based on the concept of functions space // Quart. Appl. Math. 1947. V. 5. P. 241–269.
- Mikhlin S.G. Variational Methods in Mathematical Physics. Oxford: Pergamon Press, 1964.
Supplementary files
