GLOBAL OPTIMUM SEARCH IN THE NETWORK DESIGN PROBLEM
- 作者: Krylatov A.Y.1,2
-
隶属关系:
- St. Petersburg State University
- Institute of Transport Problems
- 期: 卷 64, 编号 10 (2024)
- 页面: 1851-1867
- 栏目: Optimal control
- URL: https://bakhtiniada.ru/0044-4669/article/view/277056
- DOI: https://doi.org/10.31857/S0044466924100068
- EDN: https://elibrary.ru/KAHPGL
- ID: 277056
如何引用文章
详细
作者简介
A. Krylatov
St. Petersburg State University; Institute of Transport Problems
Email: a.krylatov@spbu.ru
Saint Petersburg; Saint Petersburg
参考
- Stackelberg H.V. Marktform und Gleichgewicht. Berlin: Springer, 1934 (English Translated: The Theory of the Market Economy. Oxford: Oxford Univer. Press, 1952).
- Migdalas A. Bilevel programming in traffic planning: Models, methods and challenge // J. Global Optimizat. 1995. V. 7. P. 381–405.
- Krylatov A.Y., Zakharov V.V., Malygin I.G. Competitive traffic assignment in road networks // Transport and Telecommunicat. 2016. V. 17. № 3. P 212–221.
- Krylatov A., Raevskaya A. Freight flow assignment in the intermodal logistics network // Transportat. Res. Procedia. 2023. V. 68C. P. 492–498.
- Xing C., Jing Y., Wang S., Ma S., Poor H.V. New viewpoint and algorithms for Wwater-filling solutions in wireless communications // IEEE Transact. on Signal Proces. 2020. V. 68. P. 1618–1634.
- Suh S., Kim T. Solving nonlinear bilevel programming models of the equilibrium network design problem: a comparative review // Ann. Operat. Res. 1992. V. 34. № 1. P. 203–218.
- Yang H., Bell M.G.H. Models and algorithms for road network design: a review and some new developments // Transport Rev. 1998. V. 18. № 3. P. 257–278.
- Abdulaal M., LeBlanc L. J. Continuous equilibrium network design models // Transportat. Res. Part B. 1979. V. 13. № 1. P. 19–32.
- Marcotte P. Network optimization with continuous control parameters // Transportat. Sci. 1983. V. 17. № 2. P. 181– 197.
- Marcotte P., Marquis G. Efficient implementation of heuristics for the continuous network design problem // Ann. Operat. Res. 1992. V. 34. № 1. P. 163–176.
- Suwansirikul C., Friesz T.L., Tobin R.L. Equilibrium decomposed optimization: A heuristic for the continuous equilibrium network design problem // Transportat. Sci. 1987. V. 21. № 4. P. 227–292.
- Tobin R. L., Friesz T. L. Sensitivity analysis for equilibrium network Fflow // Transportat. Sci. 1988. V. 22. № 4. P. 231–293.
- Tobin R. L. Sensitivity analysis for variational inequalities // J. Optimizat. Theory and Appl. 1986. V. 48. № 1. P. 191–204.
- Chiou S. Bilevel programming for the continuous transport network design problem // Transportat. Res. Part B. 2005. V. 39. № 4. P. 361–383.
- Friesz T.L., Cho H.-J., Mehta N.J., Tobin R.L., Anandalingam G. A simulated annealing approach to the network design problem with variational inequality constraints // Transportat. Sci. 1992. V. 26. № 1. P. 1–68.
- Meng Q., Yang H., Bell M.G.H. An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem // Transportat. Res. B. 2001. V. 35. P. 83–105.
- Li C., Yang H., Zhu D., Meng Q. A global optimization method for continuous network design problems // Transportat. Res. Part B. 2012. V. 46. № 9. P. 1144–1158.
- Крылатов А. Ю. Распределение потока в сети как задача поиска неподвижной точки // Дискретный анализ и исслед. операций. 2016. T. 23. № 2. C. 63–87 (English Translated: Krylatov A.Yu. Network flow assignment as a fixed point problem // J. Appl. and Industrial Math. 2016. V. 10. № 2. P. 243–256.)
- Schmeidler D. Equilibrium points of nonatomic games // J. Stat. Phys. 1973. V. 7. № 4. P. 295–300.
- Milchtaich I. Internalization of social cost in congestion games // Economic Theory. 2021. V. 71. P. 717–760.
补充文件
