Luminescent determination of dopamine using a camera

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

It is shown that the interaction of dopamine with fluorescamine can be used as a basis for the luminescent determination of dopamine using a camera, since the product formed as a result of this interaction is characterized by a luminescence maximum in the visible region (485 nm), and a light-emitting diode emitting light in the near ultraviolet region (395 nm) is sufficient to excite the luminescence. The reaction should be carried out at pH 8–8.5 in a phosphate buffer solution for 5 min; fluorescamine should be added to the reaction mixture last. Some analytical characteristics of the determination using a camera are assessed and compared with the characteristics of a similar determination of dopamine using a professional spectrofluorometer and spectrophotometer. The detection limits of dopamine using a camera, spectrophotometer and spectrofluorometer were 1.8, 1.6 and 0.5 μM, the range of determined contents was 5.4–50 μM, 4.8–100 μM, 1.5–100 μM, respectively. The presence of common inorganic ions, the content of which is 10 times higher than the content of dopamine, does not interfere with the determination. The proposed method for determining dopamine can be used for quality control of drugs.

全文:

受限制的访问

作者简介

S. Gromova

Lomonosov Moscow State University

Email: masha13_1992@mail.ru
俄罗斯联邦, 1, Leninskie Gory, Moscow, 119991

M. Matyash

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: masha13_1992@mail.ru
俄罗斯联邦, 1, Leninskie Gory, Moscow, 119991

V. Apyari

Lomonosov Moscow State University

Email: masha13_1992@mail.ru
俄罗斯联邦, 1, Leninskie Gory, Moscow, 119991

S. Dmitrienko

Lomonosov Moscow State University

Email: masha13_1992@mail.ru
俄罗斯联邦, 1, Leninskie Gory, Moscow, 119991

Yu. Zolotov

Lomonosov Moscow State University; Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: masha13_1992@mail.ru
俄罗斯联邦, 1, Leninskie Gory, Moscow, 119991; 31, Leninsky Ave., Moscow, 119991

参考

  1. Апяри В.В., Горбунова М.В., Исаченко А.И., Дмитриенко С.Г., Золотов Ю.А. Использование бытовых цветорегистрирующих устройств в количественном химическом анализе // Журн. аналит. химии. 2017. Т. 72. № 11. С. 963. https://doi.org/10.7868/S0044450217110019 (Apyari V.V., Gorbunova M.V., Isachenko A.I., Dmitrienko S.G., Zolotov Yu A. Use of household color-recording devices in quantitative chemical analysis // J. Anal. Chem. 2017. V. 72. № 11. P. 1127. https://doi.org/10.1134/S106193481711003X)
  2. Моногарова О.В., Осколок К.В., Апяри В.В. Цветометрия в химическом анализе // Журн. аналит. химии. 2018. Т. 73. № 11. С. 857. https://doi.org/10.1134/S0044450218110063 (Monogarova O.V., Oskolok K.V., Apyari V.V. Colorimetry in chemical analysis // J. Anal. Chem. 2018. V. 73. P. 1076. https://doi.org/10.1134/S1061934818110060)
  3. Lapresta-Fernández A., Capitán-Vallvey L.F. Environmental monitoring using a conventional photographic digital camera for multianalyte disposable optical sensors // Anal. Chim. Acta. 2011. V. 706. № 2. P. 328. https://doi.org/10.1016/j.aca.2011.08.042
  4. Doeven E.H., Barbante G.J., Kerr E., Hogan C.F., Endler J.A., Francis P.S. Red–green–blue electrogenerated chemiluminescence utilizing a digital camera as detector // Anal. Chem. 2014. V. 86. № 5. P. 2727. https://doi.org/10.1021/ac404135f
  5. Jayawardane B.M., McKelvie I.D., Kolev S.D. A paper-based device for measurement of reactive phosphate in water // Talanta. 2012. V. 100. P. 454. https://doi.org/10.1016/j.talanta.2012.08.021
  6. Gárcia A., Erenas M.M., Marinetto E.D., Abad C.A., de Orbe-Payá I., Palma A.J., CapitánVallvey L.F. Mobile phone platform as portable chemical analyzer // Sens. Actuators B. 2011. V. 156. № 1. P. 350. https://doi.org/10.1016/j.snb.2011.04.045
  7. Shahvar A., Saraji M., Shamsaei D. Smartphone-based chemiluminescence sensing for TLC imaging // Sens. Actuators B: Chem. 2018. V. 255. P. 891. https://doi.org/10.1016/j.snb.2017.08.144
  8. Apyari V.V., Dmitrienko S.G., Zolotov Y.A. Unusual application of common digital devices: Potentialities of Eye-One Pro mini-spectrophotometer – A monitor calibrator for registration of surface plasmon resonance bands of silver and gold nanoparticles in solid matrices // Sens. Actuators B: Chem. 2013. V. 188. P. 1109. https://doi.org/10.1016/j.snb.2013.07.097
  9. Marchenko D.Y., Petrov S.I., Sandzhieva D.A., Dedov A.G. Express method of the quantitative determination of nitrites by computer colorimetry using new reagent compositions // Theor. Found. Chem. Eng. 2016. V. 50. P. 648. https://doi.org/10.1134/S0040579516040187
  10. Gorbunova M.V., Evstigneeva P.Yu., Apyari V.V., Dmitrienko S.G. A monitor calibrator as a portable tool for determination of luminescent compounds // IEEE Trans. Instrum. Meas. 2021. V. 70. Article 6002910. https://doi.org/10.1109/TI M.2020.3041390
  11. Gorbunova M.V., Safronova A.S., Vasilyeva A.A., Spitsyna K.S., Apyari V.V., Dmitrienko S.G. Sulfonamide drugs: Low-cost spectrofluorometric determination using a computer monitor calibrator for detection // Talanta. 2023. V. 257. Article 124383 https://doi.org/10.1016/j.talanta.2023.124383
  12. Кулинский В.И., Колесниченко Л.С. Катехоламины: биохимия, фармакология, физиология, клиника // Вопросы медицинской химии. 2002. Т. 48. № 1. С. 44.
  13. Derayea S.M., Samir E. A review on the use of fluorescamine as versatile and convenient analytical probe // Microchem. J. 2020. V. 156. Article 104835 https://doi.org/10.1016/j.microc.2020.104835
  14. Imai K. Fluorimetric assay of dopamine, nerepinephrine and their 3-o-methyl metabolites by using fluorescamine // J. Chromatogr. A. 1975. V. 105. P. 135. https://doi.org/10.1016/S0021-9673(01)81097-9
  15. Imai K., Tamura Z. Liquid chromatographic determination of urinary dopamine and norepinephrine as fluorescamine derivatives // Clin. Chim. Acta. 1978. V. 85. P. 1. https://doi.org/10.1016/0009-8981(78)90093-1
  16. Nakamura H., Pisano J.J. Specific detection of primary catecholamines and their 3-o-methyl derivatives on thin-layer plates using a fluorigenic reaction with fluorescamine // J. Chromatogr. A. 1978. V. 154. P. 39. https://doi.org/10.1016/S0021-9673(00)88479-4
  17. Ingles D.L., Gallimore D. High-performance liquid chromatography of fluorescamine-labelled amines in acid solvents // J. Chromatogr. A. 1985. V. 325. P. 346. https://doi.org/10.1016/S0021-9673(00)96042-4
  18. Djozan Dj., Farajzadeh M.A. The use of fluorescamine (Fluram) in fluorimetric trace analysis of primary amines of pharmaceutical and biological interest // J. Pharm. Biomed. Anal. 1992. V. 10. P. 1063. https://doi.org/10.1016/0731-7085(91)80120-X
  19. Толмачева В.В., Ярыкин Д.И., Горбунова М.В., Апяри В.В., Дмитриенко С.Г., Золотов Ю.А. Концентрирование катехоламинов на сверхсшитом полистироле и их определение методом высокоэффективной жидкостной хроматографии // Журн. аналит. химии. 2019. Т. 74. № 11. С. 803. https://doi.org/10.1134/S004445021909010X (Tolmacheva V.V., Yarykin D.I., Gorbunova M.V., Apyari V.V., Dmitrienko S.G., Zolotov Yu A. Preconcentration of catecholamins on hypercrosslinked polystyrene and their determination by high-performance liquid chromatography // J. Anal. Chem. 2019. V. 74. № 11. P. 1057. https://doi.org/10.1134/S1061934819090107)

补充文件

附件文件
动作
1. JATS XML
2. Scheme 1. Interaction between dopamine and fluorescamine.

下载 (84KB)
3. Fig. 1. Normalised 3D luminescence spectrum of the product of the reaction of dopamine with fluorescamine. sdophamine = 25 μM, sfluorescamine = 200 μM, pH 8.5, V = 5.0 ml).

下载 (76KB)
4. Fig. 2. Dependence of luminescence intensity on solution pH. sdophamine = 25 μM, sfluorexamine = 200 μM, 2.0 ml of universal buffer mixture, V = 5.0 ml, lastly (1) fluorescamine, (2) dopamine were injected.

下载 (108KB)
5. Fig. 3. Effect of (a) nature of buffer solution, (b) interaction time, (c) fluorescamine concentration on the luminescence intensity of the product of reaction of dopamine with fluorescamine. (a), (b); 0.5 ml of buffer solution with pH 8.5; phosphate buffer solution (b), (c); V = 5.0 ml; fluorescamine was introduced last.

下载 (103KB)
6. Fig. 4. Luminescence (a), (b) luminescence (c) and absorption spectra of dopamine solutions after interaction with fluorescamine. (a), (c) 0-100, (b) 0-10 μM dopamine; (a), (c) 200, (b) 1000 μM fluorescamine; 0.5 ml phosphate buffer solution with pH 8.5; t = 5 min; V = 5.0 ml; fluorescamine was injected last.

下载 (99KB)
7. Fig. 5. Photographs of graduation (a) solutions of the product of interaction between dopamine and fluorescamine and (b) the graduation relationship for the determination of dopamine obtained with a camera. 0, 2.5, 2.5, 5, 10, 15, 25, 50, 100 µM dopamine; 200 µM fluorescamine; 0.5 ml phosphate buffer solution with pH 8.5; t = 5 min; V = 5.0 ml; fluorescamine was injected last.

下载 (259KB)

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».